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Abstract 

This study proposes a control strategy to solve the nonholonomic mobile robot trajectory tracking problem on the 
basis of Cerebellar Model Articulation Controller (CMAC). Mobile robot needs two controllers to provide the control 
demands. One controller is mathematically described in terms of robot’s kinematics; while the other is given by 
dynamics equations. To implement the speed control to track the reference trajectory, we apply the Lyapunov theory 
to obtain the virtual speed control command. On the other hand, we use cerebellum controller to approach to the non-
linearity and uncertainty of the dynamics model. Furthermore, we combine the speed error to construct a torque 
controller, which can online real-time compensate the influences made by uncertainties. The observer is used to 
estimate the external disturbance, so that the controller has more ability to reject external disturbance. The 
convergence and stability of the system is determined by the Lyapunov stability criterion after linearizing the system. 
Our simulation is performed in Matlab/Simulink environment, and the results verify the effectiveness of the controller 
algorithm. 

Keywords: nonholonomic mobile robot; Cerebellar Model Articulation Controller; Lyapunov stability criterion; 
disturbance observer. 

1. Introduction 

Many literatures which study nonholonomic mobile 
robots are usually focus on wheeled mobile robots 
(WMR). In the theoretical research of WMR’s motion 
control, in general, only pure rolling condition is 
considered. In other words, it is assumed that no slip 
condition (including lateral and longitudinal sliding) 
occurs. This ideal constraint is essentially a kind of 
nonholonomic constraint, therefore, WMR is a typical 
case of the nonholonomic system. In this paper, the 
control of WMR is studied. According to different 
control objectives, the control problems of nonholonomic 
systems can be divided into three categories[1] [2]: 
position stabilization, trajectory tracking and path 
following. However, in the content of research report[3], 
the emphasis the Brockett's theorem proves that there is 
no asymptotic stable fixed point where pure state 

feedback does not exist [1]. In the report, the 
nonholonomic mobile robot control is divided into two 
categories, one for fixed point asymptotic stabilization 
relying on highly nonlinear techniques, and the other 
based on more classical linear and nonlinear techniques 
for asymptotic stabilization of feasible and persistently 
exciting trajectories.  
Position stabilization control refers to the design of a 
feedback controller, which can actuate and stabilize the 
system from a given initial state to an arbitrary target 
state. It is also called the posture stabilization, posture 
regulation, and set-point regulation in some references. 
The position, state, posture, set-point, and so on, describe 
position and attitude of a mobile robot by a set of 
generalized coordinates. In research, the origin point 
usually be set as the target state. 
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Trajectory tracking control refers to a controller design 
which can command the robot arriving and tracking a 
specific trajectory from a given initial state in an inertial 
coordinate system. On the other hand, path following 
control means to control the robot to arrive and keep 
following a specific geometric path from a given initial 
state in an inertial coordinate system. Frankly speaking, 
trajectory tracking control demands the robot to track a 
specific time-varying trajectory, however, path following 
control only follows a designed path regardless of the 
arriving time of the specific position. Hence, we can 
regard the path following problem as a special case of the 
trajectory tracking problem since the former is much 
easier to be deal with compared to the later.  
The organization of this paper is in the following. Section 
1 introduces the historical review of nonholonomic 
WMR motion control, including research significance 
and the main difficulties. The current studies about point 
stabilization, trajectory tracking, and path following 
control of nonholonomic WMR are summarized. The 
research motivation and main structure of this paper are 
illustrated in the final paragraph. These two algorithms 
are used to design the online compensation system for 
uncertainties and the controller. An innovative control 
concept is proposed in Section 2, which combines 
kinematics control and dynamics control. The cerebellar 
neural network weight updating algorithm and kernel 
space algorithm are introduced in Section 3. The 
effective control results given by the robust cerebellar 
neural network self-adjusting trajectory tracking 
controller are demonstrated in Section 4. Section 5 gives 
the conclusions and the future work. 

2. Kinematic Model and Controller Design 

2.1 Model of WMR  
The dynamics equations of a nonholonomic mobile 

robot with n-dimensional state space and subject to m 
constraints read [4-7] 

( ) ( ) ( ) ( ) ( ) ( ) ( ), T
dM t C G + F B A λ+ + + = −τ τ   q q q q q q q q q

(1) 
( )S=q q u                                                                                         (2) 

where ( ) n nM ×∈q  is a symmetric, positive definite 
inertia matrix, ( ), n nC ×∈ q q  is the centripetal and 
Coriolis matrix, ( ) nG ∈q  is the gravitational vector, and 

( ) nF ∈ q  is the surface friction. To a mobile robot 

moving on a smooth plane, vectors ( )G q  and ( )F q  are 
equal to zero. n

d ∈τ  denotes bounded unknown 

disturbances, p∈τ 
 denotes the control input, 

( ) n pB ×∈q  denotes the input transformation matrix, 
mλ∈  is the constraint force vector, and ( ) m nA ×∈q  is 

the constraint matrix. 

 
Figure 1 WMR nonholonomic mobile robot. 
 
Figure 1 illustrates a three wheels mobile robot, in 

which d is the distance between robot’s mass center CP , 

OP  denotes the geometric center, 2b  is the distance 

between two driving wheels, and r  denotes the wheel 
radius. [ ]Tx y θq =  represents robot’s position and 

orientation, [ ]Tv ωu =  represents velocity and 

angular velocity, [ ]1 2
Tτ τ=τ is control torque, J  

denotes the inertia moment, and am  denotes the mass of 

the WMR. The parameters in each matrix appeared in 
Eqs. (1) and (2) are 
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We can express nonholonomic constraints as  
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( ) 0=A q q .                                                                                   

(3) 
Set a n-m dimensional full rank matrix ( )S q  as a 

base set in null space ( )A q  such that 

( ) ( ) 0TA S =q q .                                                                      (4) 

We can obtain an auxiliary velocity control input 
n m−∈u  from Eqs. (2) and (4), 

( )S=q q u .                                                                           (5) 

From Eq. (5) we can have 
( ) ( )S S=  q q u + q u .                                                             

(6) 
By inserting Eq. (6) into Eq. (1) and multiplying by 

( )TS q  to cancel the constraint matrix TA λ , we obtain 

the dynamic equation of the nonholonomic mobile robot:  
( )T T T T

dM M C + B+ + =τ τ

S Su S S S u S S           (7) 

 After variable replacements, Eq. (7) becomes 
( ) ( ) dM C+ =τ τ q u q,q u +                                                (8) 

where ( ) p pM ×∈q  is the symmetric positive 
definite inertia matrix, ( ) p pC ×∈ q,q is matrix for 
centripetal and Coriolis forces, p

d= ∈τ 

T
dS τ contains 

unstructured unmodeled dynamic bounded unknown 
perturbations, and p= ∈τ 

TS Bτ  is control input 

matrix ； in which 2

0
0

a

a

m
M

J m d
 

=  − 
, 2 20C ×= ,

( )T
d dS=τ τq ,  and ( ) ( )TS B=τ q q . 

2.2 Kinematic Controller Design 

[ ]Tr r r rx y θq =  is the reference orientation of 

the WMR 
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where rx , ry , rθ , rv  and rω  are the 
expectations of x , y ,θ , v  and ω . 

 

A. Kinematics Controller Design 

Let us define tracking error as 
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With the differentiation of Eq. (10), we can have the 
attitude error with respect to time expressed as: 
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From the above analysis, we can define the 
trajectory tracking of the mobile robot kinematics model 
as finding the bounded input v and ω  such that for any 
initial error, system (12) is bounded by the control input 
( ), , T

e e ex y θ and satisfies the condition 

( )lim , , 0T
e e et

x y θ
→∞

= . 

 
Lemma 1: To any ϕ∈  and ϕ ∈ , the condition 
( ) ( )( )sin tan 0f arcϕ ϕ ϕ= ≥  is true, if and only if 0ϕ = . 

B.
dτ  Disturbance Observer Design 

There are two main factors affecting the robustness 
of the WMR system. One is the interference from the 
outside world; while the other is the uncertainty of the 
internal parameters of the whole system. In fact, the 
WMR will be affected by friction and various noise such 
that there are some differences compared to the ideal 
system. The disturbance observer is designed to estimate 
the external disturbance, dτ . The external disturbance 

estimator designed for the WMR system is usually in the 
form of [3,6,7]:  

( )1 1 1 1

ˆ
d z
z M z M M C M− − − −

= +

= − − − +



 

τ Lu
L L Lu u τ

                 (13) 

where ˆ
dτ  denotes the estimation of the unknown external 

disturbance dτ , z  is the internal state of the nonlinear 
estimator, L is the parameter of the nonlinear estimator 
needed to be solved, which is usually expressed in terms 
of the constant matrix. 

   Some assumptions are needed to control the WMR 
to track the target trajectory. Let us state these 
assumptions in the following. 
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Assumption 1: The disturbances dτ  and dτ  are 
bounded, and dτ  is constant in the steady state, i.e., 

lim 0dt→∞
=τ . 

Assumption 2: The first derivative of the reference linear 
velocity rv  and angular velocity rω  are bounded and 

0rv > . 
Lemma 2: 1M −L  is the Hurwitz matrix, and 

d
τ  is 

asymptote convergence, then 
we express ˆ

d d=τ τ .  

C. The Output Layer Setting of the Cerebellar Model 
Controller 

Consider Eqs. (12) and (14), and introduce a new control 
variable, c −u = u u  

( ) ( )( )c c dM C M C= − + + + −τ τ

  u q,q u u q,q u    
   ( ) ( ),c c dC= − + + −τ τ q,q u u uΓ                            (14) 
where ( ) ( ),c c c cM C= +  Γ u u u q,q u  is the 

nonlinear function of the mobile robot, function 
( ),c cΓ u u  includes many parameters of the mobile 

robot such as mass, rotation inertia and so on. It is very 
difficult to determine these parameters, hence we use 
cerebellar model controller to approach, which can be 
expressed as 

( ) ( ), ,c c c cY= Γ u u u u W                                           (15) 
where ( ),c cY u u  denotes the cerebellar network 

output, and W is the connection weighting of the 
cerebellar network output. Then we can rewrite Eq. (14) 
as 

dM C Y= − + + −τ τu u W                                  (16) 

 

3. Simulation Results and Analysis 

In order to verify the actual control performance provided 
by the proposed algorithm, we use MATLAB / 
SIMULINK to execute the simulation. Parameters of the 
WMR are list as follows: the wheel radius, 0.12 r m= , 
the distance between two driving wheels, 2 0.6 b m= , the 
mass of the WMR, 4 am kg= , the distance between robot’s 
mass center and geometric center, 0.25 d m= and the 
inertial moment, 20.25 J kgm=  . In the simulation, the 
parameters of the observer and controller are designed as 

1

2

0
0
L

L
=
 
 
 

L , where 
1 2 12L L m= = , and  1x yk k kθ= = = , 

0.3uk =  and 0.8sk = . The initial position of the reference 
input is ( ) ( ) ( )[ ] [ ]0 0 0 0 0 0r r rx y θ = . The 
reference velocities are set as 0.1 /rv m s= , 0.01 /r rad sω = . 
The initial state of the WMR is given as
( ) ( ) ( )[ ] [ ]0 0 0 39.5 0.1 89.427 deg .x y m mθ =  .The 

external disturbance 

1.2sin(0.3 ) 0.51sin(0.3 ) 1.31sin(0.5 )
2 2

T

t t t
π π

= − + − 
  

τ  

occurs after the WMR is moving. Learning rate of 
CMAC controller is 0.5=η , and the inertia coefficient is 

0.5=α . 

 
Figure 1 WRM trajectory tracking 
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