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Abstract 

The employment rate of young people in Japanese forestry tends to decline, and the unmanaged forest area is expected 
to increase in the future. Therefore, in our laboratory we propose an autonomous field robot with all terrain vehicles 
that focuses on the automation of work. The robot automates weeding and observation in the forest. In this research, 
we observed trees by generating an environmental map in the forest using Simultaneous Localization and Mapping 
(SLAM). The error of the generated environmental map was about 1[m]. 
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1. Introduction 

In Japan's forestry industry, the decline in timber prices 
and labor shortages are causing the decline of forestry. 
However, much labor and time have to be spent on forest 
management and conservation. Especially, In-forest 
investigations and weeding work are burdensome for 
forestry workers. The in-forest investigations measures 
and manages the amount of resources, the amount of 
growth and quality of trees.  The weeding work removes 
weed that impede the growth of seedlings after 
afforestation. In order to reduce the work burden, 
mechanization and automation of forestry work are 
required. In this research, we developed an autonomous 
moving robot with platform of all-terrain vehicle with 

high moving ability in rough terrain. With this robot, we 
aim to automate the weeding work and resource 
management within the forest. We introduced the 
Simultaneous Localization and Mapping (SLAM) system 
that performs self-position estimation and environmental 
map generation based on Robot Operating System (ROS) 
to the robot.1 

2. The Robot Platform 

Fig.1 shows the robot developed in this study. We will 
operate the robot on a steep slope in the actual mountain 
hillside, and the road is rough. Thus, the robot is based 
on an ATV (Kawasaki, Inc.) to handle on the rough 
terrain. The size of robot is following; length: 1400 [mm], 
width: 900 [mm], height: 1200 [mm]. In the Japanese 
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forestry work, the planting interval is approximately 2.5 
[m], which is narrow compared to forestry regulations in 
other countries. The size of our developed robot is 
sufficiently small compared to the planting interval that 
it can easily travel into the native forest. The robot has 
four wheels, the front two wheels are turning and the rear 
two wheels are driving. The external environment is 
recognized by RealSense R200 (Intel, Inc.) which is 
constructed with a depth sensor and a RGB-CCD camera, 
and equipped on the ATV. The depth sensor can acquire 
an object’s position as three-dimensional (3D) point 
cloud data via an infrared laser measurement.  The 
maximum measurable depth direction of the sensor is 15 
[m]. In addition, the robot has an inertial measurement 
unit (IMU) for pose detection and RTK-GPS for global 
localization. The power source is gasoline engine. The 
brake lever, accelerator lever, and steering are all 
controlled by DC motors. A weeding task is performed 
by a weeding mechanism that has multi blades and 
attached on the front of the ATV. 

Fig. 1. Outline of robot appearance 

3. Map Generation System 

Fig. 2. Overview of the system 

 
Fig.2 shows the overview of the environmental map 
generation system introduced on this robot. This system 
configures SLAM using ROS. This system is divided into 
the two processes, localization process and mapping 
process. 

3.1.  Localization process 

In localization process, RGB image and 3D point cloud 
data obtained from RealSense R200 are used as input. We 
used ORB-SLAM2 for localization process.2 In ORB-
SLAM2, the ORB feature point is obtained from the RGB 
image, and the camera pose is estimated from the 
matching result of the ORB feature points at discrete 
times t-1 and t.  ORB feature points are robust against 
violent motion and interference of light. The camera pose 
is converted to metric units by using a 3D point cloud 
data. 
As shown in Fig.3 (a), even when the robot moves along 
the same path, an error occurs in the estimated self-
position. This error causes a problem that environmental 
map generation does not work well. Therefore, we 
calculate the similarity of ORB feature points between 
current and previous RGB images. Then, if there is an 
RGB image whose similarity is higher than the threshold 
value, the self-position estimation result between that 
RGB image and the current RGB image is corrected. The 
results are shown in Fig.3 (b). 

(a) Before correction      (b) After correction 

Fig. 3. Localization result 

3.2.   Mapping process  

In mapping process, 3D environmental map and 2D 
environmental map are generated using localization 
process results and 3D point cloud. 
The 3D environmental map is generated by arranging 3D 
point cloud in space.3 If the movement path of the robot 
is corrected by localization process, the position of the 
3D point cloud is corrected. 
When generating a 2D environmental map, identification 
of the ground and obstacles of the 3D point cloud is 
performed. The identification is divided into the two 
steps. First, Estimate the ground using the least squares 
method for any 20 point clouds and calculate the normal 
vector. Second, the vertical component of the normal 
vector is compared with the threshold, and if it is larger 
than the threshold, the point cloud is identified as the 
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ground. The point clouds other than the ground is 
obstacle. This identification is performed on all point 
clouds, and the point cloud are projected on a 2D plane 
to generate a 2D environmental map. All point clouds, 
ground and obstacle are shown in Fig.4. 

(a) All point clouds 

(b) Ground point clouds       (c) Obstacles point clouds 
Fig. 4. Point clouds 

4. Experiment 

We evaluated the constructed system using the robot 
movement results at the experimental site in our 
university. The experimental site consists of 39 trees, and 
there are no objects other than trees. The coordinates of 
the center of a standing tree are measured in advance 
using RTK-GPS, and this coordinate is used as a true 
value. The generated 3D environmental map is shown in 
Fig.5, and the 2D environmental map is shown in Fig.6. 
The true value of the tree coordinate, the estimation value 
of the tree coordinate, and the error is shown in Table 1. 
A unique number is set for tree. The estimated value is 
the central coordinates of the clustering result by 
Euclidean distance. The minimum value of the x-
coordinate error is 0.04[m] at No.30, and the maximum 
value is -1.8[m] at No.35. The minimum value of the y-
coordinate error is 0.15[m] at No.8 and the maximum 
value is 1.95[m] at No.44. The error of more than ± 1.5[m] 
occurred at No.35, 39 and 44. 
 
 
 
 
 

Fig. 5. 3D environmental map 

 

Fig. 6. 2D environmental map 

 

Table 1. True/estimation value and error 

5. Consideration 

The error of the coordinates of No.35, 39 and 44 is larger 
than that of other trees. The reason is that the error of self-
position estimation is large because the movement 
distance from No.30 to No.39 and No.44 to No.35 are 
longer than the movement distance between other trees. 
In the RGB image when moving between No.44 and No. 
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35, although ORB feature points can be obtained from 
the ground, but there are few trees within the range 
recognized by RealSense R200, so almost ORB feature 
points are not obtained from trees. The ORB feature 
points that can be obtained from the ground are unstable 
because it is difficult to obtain ORB feature points from 
the same place at discrete times t-1 and t. Therefore, it is 
considered that the matching of ORB feature points can’t 
be performed sufficiently, and the accuracy of self-
position estimation is degraded. When matching ORB 
feature points, it is considered necessary to track ORB 
feature points obtained from unstable ground. 

6. Conclusion 

In this study, we constructed SLAM by ROS and 
generated the environmental map in the forest using robot. 
It was possible to identify trees and ground even in a site 
simulating a forest with complex terrain. In addition, it 
was found that self-position estimation is possible when 
there is an obstacle. However, it was found that an error 
occurs when there is no obstacle. 
In the future, when matching ORB feature points, not 
only RGB images at discrete time t-1 and t are used, but 
also matching with RGB images before t-1 is used. By 
maintaining unstable ORB feature points obtained from 
the ground, we aim to develop a system that reduces the 
error of self-location estimation. And we aim at the 
further accuracy improvement of self-position estimation 
by mutually compensating the self-position obtained 
from this system and RTK-GPS. 
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