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Abstract 

With the expansion of electromagnetic field analysis using computers, large spaces that include complex shapes have 
also become an analysis target, and the development of a high-accuracy analysis is required for these problems. 
Therefore, in the present study, Berenger’s PML, which is currently the most effective absorbing boundary condition, 
is applied to the parallel finite element method based on the domain decomposition method, which is an effective 
analysis method for the microwave band. As a basic study, we developed an analysis code: ADVENTURE_FullWave  
using a parallel finite element method based on the iterative domain decomposition method. In verifying the accuracy 
of the analysis code, we analyzed TEAM Workshop Problem 29, which is a benchmark problem, and confirmed that 
a highly accurate solution is obtained. Next, a model with Berenger’s PML added to the dipole antenna model is used 
as an analysis object, and the absorption performance of the PML is evaluated using a reflection coefficient based on 
the S parameter. Moreover, the accuracy of the antenna analysis is evaluated by comparing the directivity of the 
dipole antenna with the theoretical solution. 

Keywords: Iterative domain decomposition method, Parallel finite element method, Berenger’s PML, Large-scale 
analysis, Microwave analysis. 

1. Introduction 

In the present study, Berenger’s PML for the full-wave 
electromagnetic field analysis, which is currently 
regarded as the most effective absorbing boundary 
condition, is applied to the parallel finite element method, 
which is an analysis method that is capable of computing 
large-scale problems. We then show that the parallel 
finite element method is effective as an analysis method 
for a microwave band by calculating the problem dealing 
with an open domain and evaluating the solution’s 
accuracy. First, as a basic study, we developed a three-
dimensional electromagnetic field analysis solver using a 
parallel finite element method based on the iterative 
domain decomposition method. In order to verify the 
accuracy of the developed analytical solver, we calculate 
TEAM Workshop Problem 29, which is a benchmark 
problem, and evaluate the accuracy of the analytical 
solver. Next, a model with a PML added to the dipole 

antenna is used as the analysis object, and the absorption 
performance of the PML is evaluated using a reflection 
coefficient based on the S parameter. Moreover, by 
comparing the directivity of the dipole antenna with the 
theoretical solution, evaluations of the accuracy and 
performance of the antenna analysis are performed. As a 
result, we confirmed the effectiveness of this method for 
microwave analysis. 

2. Numerical analysis 

We analyze TEAM Workshop Problem 291 in order to 
verify the accuracy of the developed analytical solver.2 
TEAM 29 is a benchmark problem and involves a 
resonator model. The resonator is cylindrical and has a 
diameter of 1.9 [m] and a height of 1.45 [m]. In the 
analysis, a dielectric phantom having a relative 
permittivity εr of 80 and an electric conductivity σ of 0.52 
[S/m] is positioned, and the resonance state is 
investigated. The analysis domain boundary is a perfect 
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conductor. The analysis model is shown in Fig. 1. Table 
1 shows the specifications of the TEAM 29 model. The 
highest calculation efficiency is achieved when the 
number of elements contained in one subdomain is 
approximately 170, and the number of partial domains is 
determined such that the number of elements contained 
in one subdomain is equal to 170. 
 

 
Fig. 1. TEAM 29 cavity resonator model 
 
Table 1.  TEAM 29 model data. 

No. of Elements DOFs No. of Subdomains 

121,277 149,668 100×7 

 
The results of the analysis of TEAM 29 are subjected to 
frequency response analysis in order to confirm the 
accuracy of the developed analytical solver. In order to 
detect the resonant frequency and compare solutions with 
actual measurements, the frequencies of some range are 
analyzed. The frequency band of 60 [MHz] to 140 [MHz] 
is calculated for 2-MHz steps, and the response for every 
frequency step is investigated. In addition, calculations 
near the resonance frequency are performed in 0.4-MHz 
intervals. The computing environment used in the present 
study is a 25-PC cluster equipped with Intel Core i7-
2600K multi-core CPUs (total: 100 cores) and 32 GB 
memory is used. The compiler used is the gcc. In addition, 
Message Passing Interface (MPI) is used for the 
parallelization library. The average calculation time per 
frequency step and the averagely used memory are shown 
in Table 2. Fig. 2 shows the frequency response of the 

magnetic field. The measured and calculated values are 
shown in Table 3. 
 
Table 2.  Specifications of the TEAM 29 model. 

No. of Elements DOFs No. of Subdomains 

121,277 149,668 100×7 

 

 
Fig. 2. Numerical and measured frequency response 
analysis results 
 
Table 3. Resonance frequencies (Units: [MHz]. The 
error rate [%] between measured data and the 
numerical solution is shown in parentheses.) 

Resonance 
mode 

Measured 
data 

FDTD 
25-mm 
mesh 

Result 

1st 68.6 67 (2.33) 65.6 
(4.37) 

2nd 110 110 
109.0 
(0.91) 

3rd 134 134 
134.4 
(0.30) 

 
As shown in Fig. 2, a solution resonating around the 
resonance frequency of the actually measured value is 
obtained. In the comparison of the measured and 
calculated values, the error rate is 4.37 [%] in the 1st 
mode, 0.91 [%] in the 2nd mode, and 0.30 [%] in the 3rd 
mode. As the mode increases, the error rate decreases. 
However, it is the same tendency as the analysis result 
obtained by the FDTD method. Moreover, the error rate 
is less than 5 [%], and a solution with high accuracy is 
obtained. 
Therefore, the solution obtained by the developed solver 
is proven to have a sufficiently high accuracy. Moreover, 
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in the analysis of the dipole antenna applying the PML 
described in the following sections, the error tolerance 
index is defined as 5 [%] in order to evaluate the accuracy. 

3. PML 

3.1. Berenger's PML 

The PML can be used to create an absorbing boundary by 
surrounding the analysis domain with a PML. From the 
viewpoint of the accuracy of the obtained solution, the 
PML is currently the most effective absorbing boundary 
condition. Although Berenger's PML is originally 
proposed as an absorbing boundary condition for the 
FDTD method, in the present study, we apply a finite 
element method dealing with an unstructured grid, we 
propose a simplified method omitting the directionality 
of electric conductivity given to the PML and confirm its 
effectiveness. 
Berenger's PML stacks several PMLs outside the analysis 
domain and gradually sets a large value of electric 
conductivity according to the outer layer so that the 
outermost wall can be surrounded with a perfect 
conductor wall without reflecting electromagnetic waves. 
Fig. 3 shows a schematic diagram of Berenger's PML 
absorbing boundary. 

 
Fig. 3.  PML absorbing boundary 

 
In this paper the distribution of the electric conductivity 
for PML is expressed as follows: 

𝜎 ൌ 𝜎௠௔௫ ቎
ቀ𝐿 െ 𝐿෠ሺ𝑥ሻቁ ∆𝑥

𝐿∆𝑥
቏

ெ

                                ሺ1ሻ 

      
   
where ∆x is the thickness of PML 1, L is the number of 
layers of the PML, 𝐿෠ሺ𝑥ሻ is a coefficient determined by 
position x, and 𝐿෠ሺ𝑥ሻ = 0 at the position of the Lth layer, 

𝐿෠ሺ𝑥ሻ   = 1 at the position of the (L-1)th layer, and 𝐿෠ሺ𝑥ሻ  
= L -1 at the position of the first layer. 
Moreover, σmax is the maximum value of the electric 
conductivity for the PML, and M is the degree 
distribution of electric conductivity. This equation is used 
to determine the electric conductivity of each layer of the 
PML. 
The parameters to be determined as the parameters of the 
PML are the thickness ∆x of PML 1, the number L of 
PML layers, the maximum electric conductivity σmax of 
the PML, the degree M distribution of the electric 
conductivity, the reflection coefficient R [dB] between 
the PML of the outermost layer, and the perfect 
conductor wall. The reflection coefficient R is 
approximated as follows:  
 

|𝑅ሺ𝜙ሻ| ≅ 𝑒𝑥𝑝 ቂെ
ଶఙ೘ೌೣ௅∆௫

ሺெାଵሻఌబ௖
cos 𝜙ቃ                               ሺ2ሻ

    
where ϕ is the incident angle of the electromagnetic wave, 
and c is the speed of light. Since we cannot decide the 
incident angle for an arbitrary incident wave, ϕ = 0, a 
reflection coefficient for perpendicular incidence is used 
as a reference. Moreover, since the M that gives the 
distribution of the electric conductivity causes the 
calculation accuracy to deteriorate if the change of the 
electric field in the PML is too steep, M is approximately 
2 to 4. If the number of layers L is too large, more 
memory will be required, and if L is too small, it will not 
function adequately as an absorbing boundary. There are 
many cases where the concrete number of L is set to 4 to 
16. The thickness ∆x of PML 1 is a constant thickness of 
all layers. 
We set the reflection coefficient R(0) according to the 
required accuracy. Upon determining the above 
parameters, the maximum electric conductivity σmax is 
given as follows:  
 

𝜎௠௔௫ ൌ െ
ሺெାଵሻఌబ௖

ଶ௅∆௫
ln|𝑅ሺ0ሻ|                                             ሺ3ሻ

       
In the present study, we construct a PML using (1) 
through (3) with 𝐿 = 9, 𝑀 = 4, and ∆𝑥 = λ/10. However, 
in order to reduce the analysis scale, we examine the 
optimum value of L in the next section. 
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3.2. Numerical results 

We assign the PML to the dipole antenna model. The 
analysis domain is a cube of length 0.6 [m] so that the 
distance from the antenna to the innermost PML matches 
the wavelength. The current density is applied to the 
antenna as a current source as follows: 
 

𝐼ሺ𝑦ሻ ൌ 𝐼଴ cos ቀ
ଶగ

ఒ
𝑦ቁ     ∶ െ𝑙 ൑ 𝑦 ൑ 𝑙                               (4) 

 
where 𝐼଴ = 0.08 [A/m2], 𝜆 is the wavelength, and 𝑙 is the 
length from the feeding point to the antenna tip. 
The analysis frequency is 1 [GHz], and the length of the 
antenna is 0.15 [m], which is the half wavelength. Here, 
mesh division is performed so that the maximum side 
length of the element is 1/20 of the wavelength. The 
analysis domain’s boundary is a perfect conductor. Fig. 4 
shows a schematic diagram of the dipole antenna model. 
 

    
(a) Analysis domain                    (b)  Antenna 

Fig. 4. Dipole antenna model 
 
We assign PMLs to the domain boundary as shown in Fig. 
4(a). The plane portion of the PML at the domain 
boundary overlaps a number of flat plates according to 
the number of layers, and the corner portion of the PML 
is one rectangular parallelepiped or cube. The boundary 
of the outermost layer of the PML is a perfect conductor 
wall. We perform performance evaluation by setting the 
thickness of one layer to be 0.03 [m] and the PML to have 
𝐿 = 9 (hereinafter a PML with L layers is abbreviated as 
PML(𝐿)). Table 4 lists the number of elements and the 
degree of freedom of the analysis model. 
 
Table 4. Number of elements and DOFs of the dipole 
antenna model 

 PML(0): Perfect 
conductor wall PML(9) 

No. of 
Elements 

4,669,759 26,899,669 

DOFs 5,506,368 31,703,550 
 
In (3), we set 𝐿 = 9, ∆𝑥 = 0.03, 𝑀 = 4, and 𝑅(0) = -120 
[dB], which yields the maximum electric conductivity 
𝜎௠௔௫  to PML(9). In addition, we decide the electric 
conductivity of each layer using (1). In this study, we set 

the average value of each layer to the electric 
conductivity of the corner portion. We evaluate the 
performance of the PML based on the reflection 
coefficient obtained using the S11 parameter3. The 
observation point of the S11 parameter is on the x-axis 1 
cm inside of the PML. The computing environment is the 
same as in the section 2. Table 5 lists the reflection 
coefficient, the CPU time, and the memory size. 
 
Table 5. Results for reflection coefficient, CPU time, and 
memory size 

 

PML(0):  
Perfect 
conductor 
wall 

PML(9) 

Reflection 
coefficient [dB] 0 -18.65 

CPU time [s] 1,278 18,787 
Memory size 
[MB/core] 44.3 227.3 

 
When the domain boundary is PML(0), i.e., when it is a 
perfect conductor wall, S11 = 1, so that the reflection 
coefficient is 0 [dB].  
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Fig. 5.  Visualization of the analysis result (electric field) 
(Upper: Side view of with PML of PML(9), Lower-Left: 
Upper view of PML(9), L-Right: Upper view of PML(0)) 
 
On the other hand, when the domain boundary is PML(9), 
the reflection coefficient is -18.65 [dB]. The design target 
reflection coefficient of the antenna, for example, is 
generally approximately -10 to -20 [dB], and in the 
present study, we use a reflection coefficient of 
approximately -10 to -20 [dB]3. Thus, PML(9) can obtain 
sufficient absorption performance. 
On the other hand, in comparing with PML (0), PML (9) 
increases the amount of memory used and computation 
time, depending on the absorbing layer applied. Fig. 7 
shows a visualization diagram of the electric field 
obtained by analysis. 
In Fig. 5, the left-hand side shows PML(9) at the 
boundary edge and the electric field propagates from the 
dipole antenna to the free space. On the other hand, the 
right-hand side of Fig. 5 shows the mode when the dipole 
antenna is enclosed by a perfect conductor wall. 
Next, we perform the directivity evaluation of the dipole 
antenna by error evaluation using the theoretical solution 
in the far field. The error evaluation of the far field uses 
the E plane. 
The theoretical solution3 of the far field of the E plane is 
as follows: 
 

𝐸ఏ ൌ 𝑗60𝐼
𝑒ି௝௞௥

𝑟
∙

cos ቀ
𝜋
2 cos 𝜃ቁ

sin 𝜃
                                 ሺ5ሻ 

      
  
where 𝑗 is the imaginary unit, 𝐼 is the current, and 𝑟 is the 
distance from the feeding point. The approximate 
distance 𝑟 to the far-field peak of the Fresnel’s region 
(2 𝑙ଶ/𝜆 ൏  𝑟) is 0.250 [m], if the dimension l (= 0.150 
[m]) of the dipole antenna is not ignored. Moreover, 𝑘 is 
the wave number and is given by 𝑘 ൌ 2𝜋 𝜆⁄ . The 
directivity evaluation is performed by comparing the 

numerical analysis solution with the theoretical solution 
on the E plane. Fig. 6 shows a plot of the numerical 
analysis solution 𝑒ఏ  and the theoretical solution 𝐸ఏ  in 
increments of 1 [deg].  
 

 
Fig.6.  Numerical and theoretical solutions in the E plane 
 
The directivities of the numerical and theoretical 
solutions agree very well. The range of θ, which is the far 
field far beyond the Fresnel’s region, can be expressed by 
(6). The lower limit 𝜃ெ௜௡  is arcsinሺ 2 𝑙ଶ ോ 𝑟𝜆ሻ ൅ 90 ≅
െ57  [deg], and the upper limit 𝜃ெ௔௫  is 90 െ
arcsinሺ 2 𝑙ଶ ോ 𝑟𝜆ሻ ≅ 53  [deg]. The average error rate 
𝐸௘௥௥  in this range is obtained by (7). As a result, the 
average error rate is 1.70 [%], and it is shown that a 
highly accurate solution can be obtained. 
 

arcsin ቆ 
2 𝑙ଶ

𝑟𝜆
ቇ ൅ 90 ൑ 𝜃 ൑ 90 െarcsin ቆ

2 𝑙ଶ

𝑟𝜆
 ቇ        ሺ6ሻ 

 

𝐸௘௥௥ ൌ
∑

|𝑒௜ െ 𝐸௜|
𝐸௜

ఏಾೌೣ
௜ୀఏಾ೔೙

𝜃ெ௔௫ െ 𝜃ெ௜௡ ൅ 1
ൈ 100      ሾ%ሿ                       ሺ7ሻ 

 
In the calculations shown in Fig.5, we used a dipole 
antenna model with PML(9). Here, we find the optimum 
L from the average error rate in the far field and the 
reflection coefficient of PML(L) by a parameter study 
using the number of PMLs. The computing environment 
is the same as in the section 2. Table 6 shows the number 
of elements for each L, the number of degrees of freedom 
of the edge, the error rate, the reflection coefficient, the 
calculation time, and the number of iterations of the 
COCG method applied to the interface problem. 
 

Table 6. Numerical model data and results 
 PML(9) PML(8) PML(7) 
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No. of 
elements 

26,899,669 24,184,687 21,533,641 

DOFs 31,703,550 28,506,352 25,383,890 
Average 
error rate 
[%] 

1.70 3.81 12.87 

Reflection 
coefficient 
[dB] 

-18.65 -15.79 -15.04 

CPU time 
[h] 

5.22 3.77 2.81 

No. of 
iterations 

46,508 37,755 30,695 

Memory 
size 
[MB/core] 

227.3 204.6 182.6 

 
From Table 6, PML(9) is the case with the best far field 
accuracy. When the allowable range of the error rate is 
less than 5 [%], which is the allowable range of numerical 
analysis error, since PML(7) has a reflection coefficient 
of less than -15 [dB], the PML functions sufficiently. 
However, the error rate exceeded the allowable range. 
We can find that PML(8) is optimal because it has a better 
calculation time and iteration count than PML(9). 

4. Conclusion 

In the present paper, we propose a simplified method that 
omits the directionality to Berenger's PML for the full-
wave electromagnetic field analysis and gives the 
average value of the electric conductivity of each layer at 
the corner of the model. Performance evaluation reveal 
that sufficient absorption performance can be obtained. 
In the accuracy verification by directivity evaluation of 
the dipole antenna, when the maximum element side 
length is set to 1/20 of the wavelength and the PML to be 
given is set to 9 layers, the error rate of the numerical 
solution and the theoretical solution is about 1.70 [%]. It 
is found that a highly accurate solution can be obtained. 
In addition, when the tolerance range of the far-field error 
rate that is considered to be sufficiently practical is set to 
less than 5 [%], an eight-layer PML is found to be optimal. 
In addition, the usefulness of the proposed method for a 
frequency band of 1.2 GHz or higher, which is used in 
microphones and mobile phones, is demonstrated.  
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