
© The 2020 International Conference on Artificial Life and Robotics (ICAROB2020), Jan. 13-16, B-Con Plaza, Beppu, Oita, Japan

Network with Sub-Networks

Ninnart Fuengfusin
Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology,

2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan
Hakaru Tamukoh

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology,
2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan

E-mail: fuengfusin.ninnart553@mail.kyutech.jp, tamukoh@brain.kyutech.jp
http://www.lsse.kyutech.ac.jp/english/

Abstract

We introduce network with sub-networks, a neural network which it’s weight layers can be detached into sub-
neural networks during inference phase. To develop trainable parameters which can be inserted into both base- and
sub-models, firstly, the parameters of sub-models are duplicated to base-model. Each model is forward-propagated
separately. All models are grouped into pairs. Gradients from selected pairs of networks are averaged and updated
both networks. With MNIST dataset, our base-model achieves the identical test-accuracy to the regularly trained
models. In other hand, the sub-models are suffered an extend of loss in test-accuracy, nevertheless the sub-models
provide alternative approaches to be deployed with less parameters compare to the regular model.

Keywords: Model Compression, Neural Networks, Multilayer Perceptron, Supervised Learning.

1. Introduction

Deep neural networks (DNNs) have been gained the
attraction in the most recent years from their ability to
provide the state-of-the-art performance in varied
applications. However, to deploy those DNNs into the
mobile devices is proved to be problematic from the
mobile devices are diverse in the specification. This
raises the question: how to effectively design DNNs by
given the specification of the mobile phone? To answer
this question, two main factors within DNNs could be
optimized.

The first factor is the performance of DNNs. In
general, DNNs are provided an assumption by stacking
the number of weight layers of DNNs, the better the
performance of the model will be. One of the widely used
example is the growing trend in the number of weight
layers in ImageNet Large Scale Visual Recognition
Competition (ILSVRC). AlexNet1, the model which won
ILSVRC-2012 consists of 8-weight layers. ResNet2, the
winner of ILSVRC-2015, contains of 152-weight layers.
From AlexNet, ResNet reduces top-5 test error from 15.3
to 3.57. Even though, the growth in the number of weight

layers might reduce the test-error rate of the model, it
comes with the trade-off of the second factor, latency.
More layers of DNNs means the higher number of
parameters to compute. This also increases in the
memory footprint which is crucial for the mobile device.

To solve this optimization problem, we might select
the model which achieves the real-time performance
given a mobile device specification. However, if the user
diversely prefers the performance over the latency, this
method does not satisfy the demand. Another method is
to let the user select the preference and subsequently
match the preference to the most suitable model. This
method consumes the memory footprint for keeping
various models into the mobile device. To satisfy user's
preference in selectivity in both performance and latency
without highly consuming memory footprint, we propose
network with sub-networks (NSNs), DNNs which could
be removed weight layers without dramatically decrease
in the performance.

Generally, if one of the weight layers of DNNs is
detached during the inference time, the performance of
that model will be diminished. To explain our hypothesis,
one of the widely used examples to explain how DNNs

Ninnart Fuengfusin, Hakaru Tamukoh

© The 2020 International Conference on Artificial Life and Robotics (ICAROB2020), Jan. 13-16, B-Con Plaza, Beppu, Oita, Japan

operate is to compare it as a feature extraction model.
From the first weight layer, extracts the low-level
features to the last layers extract the high level features.
This process creates a dependent relationship between
each weight layer.

To challenge this concept, we propose the training
method that allows NSNs to dynamically adapt to the
removing of weight layers. We call this method, copying
learn-able parameters and sharing gradient. Both
methods are designed to optimize the learn-able
parameters for both models, the model with or without
the weight layer to detached.

2. Related Works

2.1. Slimmable Neural Networks

Slimmable Neural Networks3 (SNNs) is the main
inspired of this research. If our purposed method adds or
remove weights in depth-wise direction, SNNs append or
detach weights in width-wise direction. The range of
possible width of networks requires to be pre-defined as
the switch. The main research problem is the mean and
variance of activations which come out from different-
width weight layers are generally diverse. SNNs
proposed switchable batch normalization to correct the
mean and variance of SNNs.

3. Network with Sub-Networks

There are two types of models in NSNs: the base and sub-
model. We define the base-model as DNNs with n hidden
layers. Where n is a positive integer more than zero. From
base-model, we could create n number of sub-models.
Each of sub-model is mapped with 0,…,n-1 hidden layers.
From this concept, the biggest sub-model takes all of the
weight layers of the base-model except the input layer.
The second biggest sub-model takes all of the weight
layers of the biggest sub-model except the input layer of
the biggest sub-model. This could be done repeatedly
until we get the sub-model that has not any hidden layer.

In the next section, we will describe two processes
in our purposed method: copying learn-able parameters
and sharing gradient. Those processes are designed to be
applied repeatedly in every mini-batch training.

3.1. Copying Learn-able Parameters

 The goal of copying learn-able parameters is to combine
each sub-model into the base-model. To enforce the
similarity between weight and bias parameters between
each model, the weights and biases are copied from the
lesser sub-model to bigger sub-model and repeat until the

base-model. The process is shown in Eq. (1) and Fig. 1.
Where 𝑊௢,௠ is a weight variable, o is an integer
indicating the order of weight layer and m is an integer
indicating the model number.

𝑊௢ାଵ,௠ାଵ ൌ 𝑊௢,௠ (1)

After we apply this process, if we remove the input
weight layer of base-model with the non-linear activation
function, it will become the sub-model.

3.2. Sharing Gradient

 sharing gradient is designed to constraint the learnable-
variables to able to perform in two or more networks.
Firstly, we forward propagate all of the models. During
back propagation, the gradients from each model are
collected separately. Each model is paired from the sub-
model without the hidden layer to sub-model with a
hidden layer until, the sub-model with n-1 hidden layers
to base-model. The gradients from each model's pair are
averaged and updated the weights and bias. sharing
gradient process is expressed in Eq. (2) and Fig. 2 where
lr is the learning rate and L is the loss function.

𝑊௠,௢ ൌ 𝑊௠,௢ െ
𝑙𝑟
2

ሺ
𝜕𝐿௠

𝜕𝑊௠,௢
൅

𝜕𝐿௠ାଵ

𝜕𝑊௠ାଵ,௢ାଵ
ሻ

(2)

Fig. 1. Illustration of both network with sub-networks and
copying learn-able parameters process. Where the base-model
is two hidden layers DNNs and the sub-model as one hidden
layer DNNs and a softmax-regression model. The name of the
variable of weight, 𝑊௢,௠ following with the size of weight

array. copying learn-able parameters makes 𝑊ଵ,ଵ , 𝑊ଶ,ଶ and

𝑊ଷ,ଷ to have exactly the same weight.

 Network with Sub-Networks

© The 2020 International Conference on Artificial Life and Robotics (ICAROB2020), Jan. 13-16, B-Con Plaza, Beppu, Oita, Japan

The reason behinds sharing gradient for only a pair of
models is from when sharing more than a pair gradient,
the optimization becomes too complicated. In this case,
the performance of NSNs hardly reaches the optimal
point. Nonetheless, only an input layer of base-model,
which has not a pair, is updated with the regular back
propagation.

4. Experiments

The experiment was conducted using a hand-written digit
image dataset, MNIST4. MNIST dataset consists of
60,000 training images and 10,000 test images. Each
image in the dataset is the gray-scale image and,
composed of 28x28 pixel. Each image pixel of MNIST
mage was pre-processed into the range of [0, 1] by
dividing all pixel value with 255.

Multi-layer perceptron (MLP) was applied with
rectified linear unit (ReLU) as the non-linear activation
function. The last layer was applied with log-softmax
with the cost function as cross-entropy loss. The input
layer of MLP was applied with Dropout5, p=0.8. The
hidden layers were put with dropout rate, p=0.5. In the
case of softmax-regression, we did not apply Dropout
into the model since it was already under-fitting. The
base-models were further regulated by using L2-weight
penalty.

We applied stochastic gradient descent (SGD) with
momentum, 𝛼 ൌ 0.9. Although, we applied with slightly
different format of SGD with momentum. From
Tensorflow6, neural networks framework, Tensorflow
format of SGD with momentum was shown in Eq. (3).
Where V is the gradient accumulation term, t is the batch-
wise iteration step and G is the gradient at t+1. Our
format of SGD with momentum is shown in Eq. (4). After
V was found, both of format was used the same Eq. (5).
to update the weight, W.

𝑉௧ାଵ ൌ 𝛼𝑉௧ ൅ 𝐺 (3)

𝑉௧ାଵ ൌ 𝛼𝑉௧ ൅ ሺ1 െ 𝛼ሻ𝐺 (4)

𝑊௧ାଵ ൌ 𝑊௧ାଵ െ 𝑙𝑟ሺ𝑉௧ାଵሻ (5)

NSNs performed better with our format of SGD with
momentum comparing the regular or Tensorflow format
at 𝛼 ൌ 0.9. We speculated that NSNs required the higher
proportion of the gradient accumulation, V comparing
with the current gradient, G to converge. In the other
hand, with the regularly trained DNNs, our format of
SGD with momentum performed slightly worse in term
of test accuracy. Hence, to perform a fair comparison
between both type of models, the regularly-trained
models were trained with Eq. (3). Our purposed method
models were trained Eq. (4). We set the training batch as
128. Each model had been training for 600 epoch. We
reported the best test accuracy which might occur during
the training. The initial learning rate, 𝑙𝑟 ൌ 0.3 and step
down by one third every 200 epoch.

The experimental result consists of two sections. First
section is model0-1 or the base-model as MLP with a
hidden layer, model1, with a sub-model as the soft-max
regression, model0. Second section is model0-1-2 or the
base-model as two hidden layers MLP, model2. The sub-
models are MLP with a hidden layer, model1, and the
soft-max regression, model0. The graphical of model0-1-
2 is shown in Fig. 2. The base-line models which are
regularly trained are referred as ref-model and following
with number hidden layers. For example, ref-model1 is
the base-line MLP with a hidden layer. The results of
base-line model are shown in Table. 1.

Test

Accuracy
Number

Parameters
Regularization

Parameter
ref-model2 0.9886 1.24M 1 ൈ 10ିହ
ref-model1 0.9882 0.62M 5 ൈ 10ି଺

ref-model0 0.9241 7.85k 9 ൈ 10ିହ

Fig. 2. sharing gradient in model0-1-2 section. The gradients
are shared from the sub-model to base-mode, pair by pair. Only
the input weight layer of 𝑊ଷ,ଵ is regularly updated without

sharing. Where 𝐿௠ is the loss function at the m model.

Table 1. Results of MNIST classification of base-line.

Ninnart Fuengfusin, Hakaru Tamukoh

© The 2020 International Conference on Artificial Life and Robotics (ICAROB2020), Jan. 13-16, B-Con Plaza, Beppu, Oita, Japan

4.1. Model0-1

MLP with a hidden layer was used as the base-model.
The sub-model was the softmax-regression. In all of the
following experiment, we prioritized the base-model
performance. We reported all of the test accuracy of
models in epoch that contains the best test accuracy of
the base-model. model0-1 results are displayed in Table
2. We applied the regularization parameter as 9 ൈ 10ି଺
at the base-model.

Test

Accuracy
Number

Parameters

model1 0.9857 0.62M
model0 0.9253 7.85k

Comparing with the ref-model1 and model1, the test
accuracy of model1 were dropped for an extent. This
indicated that our purpose methods negatively affected
the performance of the model for ability to removing the
weight layers.

4.2. Model0-1-2

MLP with two hidden layer was used as the base-model.
The sub-models were MLP with a hidden layer and the
softmax-regression. model0-1-2 results were displayed in
Table. 3. We applied the regularization parameter as 9 ൈ
10ିହ at the base-model.

Test

Accuracy
Number

Parameters
model2 0.989 1.24M
model1 0.9843 0.62M
model0 0.926 7.85k

The difference in test accuracy between model1 and
model2 indicated the bias of our purposed method
towards the base-model. We speculated this bias might
come from the sharing gradient process. All of the
gradients that sub-models received, were averaged from
multi-models. However, our base-model had an input
layer that updated from gradient from the model itself as
shown in Fig. 2.

Comparing with the result of model1 in model0-1 and
ref-model1, our model2 in model0-1-2 contrastingly out-
performed with ref-model2 for a tiny margin. We
hypothesized that the constraints of our purposed method
might cause some type of regularization into the models.
In case of model1 in model0-1, this regularization effect
might excessively strong and negatively affected the

performance. Nevertheless, in case of model2 in model0-
1-2, the regularization effect seems to be adequate and
positively affected the accuracy.

5. Conclusion

We purpose NSNs, DNNs that could be removed weight
layers on fly. NSNs consists of a base-model and, sub-
models. To assemble sub-models into the base-model,
copying learn-able parameters is introduced. sharing
gradient is applied for learn-able parameters could be
used in two or more models. Our purposed method was
conducted in the small scale experiment with a few
hidden layers DNNs with MNIST dataset. The bigger-
scale models with the dataset will be focused on future
works.

Acknowledgements
This research was supported by JSPS KAKENHI
Grant Numbers 17K20010.

References

1. A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet
classification with deep convolutional neural networks, in
Advances in neural information processing systems, pp.
1097–1105, 2012.

2. K. He, X. Zhang, S. Ren, and J. Sun, Deep residual
learning for image recognition, in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp.
770–778, 2016.

3. J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable
neural networks,” arXiv preprint arXiv:1812.08928, 2018.

4. Y. LeCun, C. Cortes, and C. Burges, “Mnist hand-written
digit database,” AT&T Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, vol. 2, p. 18, 2010.

5. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent
neural networks from overfitting”, The Journal of
Machine Learning Research, vol. 15, no. 1, pp. 1929–1958,
2014.

6. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, et al.,
“Tensorflow: A system for large-scale machine learning,”
in 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), pp. 265–283,
2016.

Table 2. Results of MNIST classification of model0-1.

Table 3. Results of MNIST classification of model0-1-2.

