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Abstract 

We introduce network with sub-networks, a neural network which it’s weight layers can be detached into sub-
neural networks during inference phase. To develop trainable parameters which can be inserted into both base- and 
sub-models, firstly, the parameters of sub-models are duplicated to base-model. Each model is forward-propagated 
separately. All models are grouped into pairs. Gradients from selected pairs of networks are averaged and updated 
both networks. With MNIST dataset, our base-model achieves the identical test-accuracy to the regularly trained 
models. In other hand, the sub-models are suffered an extend of loss in test-accuracy, nevertheless the sub-models 
provide alternative approaches to be deployed with less parameters compare to the regular model. 
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1. Introduction 

Deep neural networks (DNNs) have been gained the 
attraction in the most recent years from their ability to 
provide the state-of-the-art performance in varied 
applications. However, to deploy those DNNs into the 
mobile devices is proved to be problematic from the 
mobile devices are diverse in the specification. This 
raises the question: how to effectively design DNNs by 
given the specification of the mobile phone? To answer 
this question, two main factors within DNNs could be 
optimized. 

The first factor is the performance of DNNs. In 
general, DNNs are provided an assumption by stacking 
the number of weight layers of DNNs, the better the 
performance of the model will be. One of the widely used 
example is the growing trend in the number of weight 
layers in ImageNet Large Scale Visual Recognition 
Competition (ILSVRC). AlexNet1, the model which won 
ILSVRC-2012 consists of 8-weight layers. ResNet2, the 
winner of ILSVRC-2015, contains of 152-weight layers. 
From AlexNet, ResNet reduces top-5 test error from 15.3 
to 3.57. Even though, the growth in the number of weight 

layers might reduce the test-error rate of the model, it 
comes with the trade-off of the second factor, latency. 
More layers of DNNs means the higher number of 
parameters to compute. This also increases in the 
memory footprint which is crucial for the mobile device. 

To solve this optimization problem, we might select 
the model which achieves the real-time performance 
given a mobile device specification. However, if the user 
diversely prefers the performance over the latency, this 
method does not satisfy the demand.  Another method is 
to let the user select the preference and subsequently 
match the preference to the most suitable model. This 
method consumes the memory footprint for keeping 
various models into the mobile device. To satisfy user's 
preference in selectivity in both performance and latency 
without highly consuming memory footprint, we propose 
network with sub-networks (NSNs), DNNs which could 
be removed weight layers without dramatically decrease 
in the performance. 

Generally, if one of the weight layers of DNNs is 
detached during the inference time, the performance of 
that model will be diminished. To explain our hypothesis, 
one of the widely used examples to explain how DNNs 
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operate is to compare it as a feature extraction model. 
From the first weight layer, extracts the low-level 
features to the last layers extract the high level features. 
This process creates a dependent relationship between 
each weight layer. 

To challenge this concept, we propose the training 
method that allows NSNs to dynamically adapt to the 
removing of weight layers. We call this method, copying 
learn-able parameters and sharing gradient. Both 
methods are designed to optimize the learn-able 
parameters for both models, the model with or without 
the weight layer to detached. 

2. Related Works 

2.1. Slimmable Neural Networks 

Slimmable Neural Networks3 (SNNs) is the main 
inspired of this research. If our purposed method adds or 
remove weights in depth-wise direction, SNNs append or 
detach weights in width-wise direction. The range of 
possible width of networks requires to be pre-defined as 
the switch. The main research problem is the mean and 
variance of activations which come out from different-
width weight layers are generally diverse. SNNs 
proposed switchable batch normalization to correct the 
mean and variance of SNNs.  

3. Network with Sub-Networks 

There are two types of models in NSNs: the base and sub-
model. We define the base-model as DNNs with n hidden 
layers. Where n is a positive integer more than zero. From 
base-model, we could create n number of sub-models. 
Each of sub-model is mapped with 0,…,n-1 hidden layers. 
From this concept, the biggest sub-model takes all of the 
weight layers of the base-model except the input layer. 
The second biggest sub-model takes all of the weight 
layers of the biggest sub-model except the input layer of 
the biggest sub-model. This could be done repeatedly 
until we get the sub-model that has not any hidden layer. 

In the next section, we will describe two processes 
in our purposed method: copying learn-able parameters 
and sharing gradient. Those processes are designed to be 
applied repeatedly in every mini-batch training. 

3.1. Copying Learn-able Parameters 

 The goal of copying learn-able parameters is to combine 
each sub-model into the base-model. To enforce the 
similarity between weight and bias parameters between 
each model, the weights and biases are copied from the 
lesser sub-model to bigger sub-model and repeat until the 

base-model. The process is shown in Eq. (1) and Fig. 1. 
Where 𝑊 ,  is a weight variable, o is an integer 
indicating the order of weight layer and m is an integer 
indicating the model number. 

𝑊 , 𝑊 ,  (1)

After we apply this process, if we remove the input 
weight layer of base-model with the non-linear activation 
function, it will become the sub-model. 

3.2. Sharing Gradient 

 sharing gradient is designed to constraint the learnable-
variables to able to perform in two or more networks. 
Firstly, we forward propagate all of the models. During 
back propagation, the gradients from each model are 
collected separately. Each model is paired from the sub-
model without the hidden layer to sub-model with a 
hidden layer until, the sub-model with n-1 hidden layers 
to base-model. The gradients from each model's pair are 
averaged and updated the weights and bias. sharing 
gradient process is expressed in Eq. (2) and Fig. 2 where 
lr is the learning rate and L is the loss function. 

𝑊 , 𝑊 ,
𝑙𝑟
2

𝜕𝐿
𝜕𝑊 ,

 
𝜕𝐿

𝜕𝑊 ,
 

(2)

Fig. 1. Illustration of both network with sub-networks and 
copying learn-able parameters process. Where the base-model 
is two hidden layers DNNs and the sub-model as one hidden 
layer DNNs and a softmax-regression model. The name of the 
variable of weight, 𝑊 ,  following with the size of weight 

array. copying learn-able parameters makes 𝑊 , , 𝑊 ,  and 

𝑊 ,  to have exactly the same weight. 
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The reason behinds sharing gradient for only a pair of 
models is from when sharing more than a pair gradient, 
the optimization becomes too complicated. In this case, 
the performance of NSNs hardly reaches the optimal 
point. Nonetheless, only an input layer of base-model, 
which has not a pair, is updated with the regular back 
propagation. 

4. Experiments 

The experiment was conducted using a hand-written digit 
image dataset, MNIST4. MNIST dataset consists of 
60,000 training images and 10,000 test images. Each 
image in the dataset is the gray-scale image and, 
composed of 28x28 pixel. Each image pixel of MNIST 
mage was pre-processed into the range of [0, 1] by 
dividing all pixel value with 255.  

Multi-layer perceptron (MLP) was applied with 
rectified linear unit (ReLU) as the non-linear activation 
function. The last layer was applied with log-softmax 
with the cost function as cross-entropy loss. The input 
layer of MLP was applied with Dropout5, p=0.8. The 
hidden layers were put with dropout rate, p=0.5. In the 
case of softmax-regression, we did not apply Dropout 
into the model since it was already under-fitting. The 
base-models were further regulated by using L2-weight 
penalty. 

We applied stochastic gradient descent (SGD) with 
momentum, 𝛼 0.9. Although, we applied with slightly 
different format of SGD with momentum. From 
Tensorflow6, neural networks framework, Tensorflow 
format of SGD with momentum was shown in Eq. (3). 
Where V is the gradient accumulation term, t is the batch-
wise iteration step and G is the gradient at t+1. Our 
format of SGD with momentum is shown in Eq. (4). After 
V was found, both of format was used the same Eq. (5). 
to update the weight, W. 

𝑉 𝛼𝑉 𝐺 (3)

𝑉 𝛼𝑉 1 𝛼 𝐺 (4)

𝑊 𝑊 𝑙𝑟 𝑉  (5)

NSNs performed better with our format of SGD with 
momentum comparing the regular or Tensorflow format 
at 𝛼 0.9. We speculated that NSNs required the higher 
proportion of the gradient accumulation, V comparing 
with the current gradient, G to converge. In the other 
hand, with the regularly trained DNNs, our format of 
SGD with momentum performed slightly worse in term 
of test accuracy. Hence, to perform a fair comparison 
between both type of models, the regularly-trained 
models were trained with Eq. (3). Our purposed method 
models were trained Eq. (4). We set the training batch as 
128. Each model had been training for 600 epoch. We 
reported the best test accuracy which might occur during 
the training. The initial learning rate, 𝑙𝑟 0.3 and step 
down by one third every 200 epoch. 

The experimental result consists of two sections. First 
section is model0-1 or the base-model as MLP with a 
hidden layer, model1, with a sub-model as the soft-max 
regression, model0. Second section is model0-1-2 or the 
base-model as two hidden layers MLP, model2. The sub-
models are MLP with a hidden layer, model1, and the 
soft-max regression, model0. The graphical of model0-1-
2 is shown in Fig. 2. The base-line models which are 
regularly trained are referred as ref-model and following 
with number hidden layers. For example, ref-model1 is 
the base-line MLP with a hidden layer. The results of 
base-line model are shown in Table. 1. 

 
Test 

Accuracy
Number 

Parameters 
Regularization

Parameter 
ref-model2 0.9886 1.24M 1 10  
ref-model1 0.9882 0.62M 5 10  

ref-model0 0.9241 7.85k 9 10  

Fig. 2. sharing gradient in model0-1-2 section. The gradients
are shared from the sub-model to base-mode, pair by pair. Only
the input weight layer of 𝑊 ,  is regularly updated without

sharing. Where 𝐿  is the loss function at the m model. 

Table 1. Results of MNIST classification of base-line.
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4.1. Model0-1 

MLP with a hidden layer was used as the base-model. 
The sub-model was the softmax-regression. In all of the 
following experiment, we prioritized the base-model 
performance. We reported all of the test accuracy of 
models in epoch that contains the best test accuracy of 
the base-model. model0-1 results are displayed in Table 
2. We applied the regularization parameter as 9 10  
at the base-model. 

 
Test 

Accuracy
Number 

Parameters 

model1 0.9857 0.62M 
model0 0.9253 7.85k 

 
Comparing with the ref-model1 and model1, the test 
accuracy of model1 were dropped for an extent. This 
indicated that our purpose methods negatively affected 
the performance of the model for ability to removing the 
weight layers. 

4.2. Model0-1-2 

MLP with two hidden layer was used as the base-model. 
The sub-models were MLP with a hidden layer and the 
softmax-regression. model0-1-2 results were displayed in 
Table. 3. We applied the regularization parameter as 9
10  at the base-model. 
 

 
Test 

Accuracy 
Number 

Parameters 
model2 0.989 1.24M 
model1 0.9843 0.62M 
model0 0.926 7.85k 

 
The difference in test accuracy between model1 and 
model2 indicated the bias of our purposed method 
towards the base-model. We speculated this bias might 
come from the sharing gradient process. All of the 
gradients that sub-models received, were averaged from 
multi-models. However, our base-model had an input 
layer that updated from gradient from the model itself as 
shown in Fig. 2. 

Comparing with the result of model1 in model0-1 and 
ref-model1, our model2 in model0-1-2 contrastingly out-
performed with ref-model2 for a tiny margin. We 
hypothesized that the constraints of our purposed method 
might cause some type of regularization into the models. 
In case of model1 in model0-1, this regularization effect 
might excessively strong and negatively affected the 

performance. Nevertheless, in case of model2 in model0-
1-2, the regularization effect seems to be adequate and 
positively affected the accuracy.  

5. Conclusion 

We purpose NSNs, DNNs that could be removed weight 
layers on fly.  NSNs consists of a base-model and, sub-
models. To assemble sub-models into the base-model, 
copying learn-able parameters is introduced. sharing 
gradient is applied for learn-able parameters could be 
used in two or more models. Our purposed method was 
conducted in the small scale experiment with a few 
hidden layers DNNs with MNIST dataset. The bigger-
scale models with the dataset will be focused on future 
works. 
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