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Abstract 

This paper presents a performance analysis of two-view tracking and Multi-State Constraint Kalman Filter (MSCKF) 
fusion for a pose estimation. The system and measurement model of both two-view tracking and MSCKF are derived 
based on the fusion condition. The simulation result of the fused algorithm using the Drone Racing dataset, collected 
from an aggressive flight of micro aerial vehicle (MAV), shows the performance improvement of both attitude and 
position estimation compared to the performance of MSCKF. 
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1. Introduction 

Visual-Inertial Odometry (VIO) is an algorithm for a 
pose estimation using images from a camera sensor and 
linear accelerations and angular velocities from an 
Inertial Measurement Unit (IMU). The pose estimation 
algorithms using each sensor are known as Visual 
Odometry (VO) and Inertial Navigation System (INS). 
Both VO and INS suffer from drift over time because the 
pose is estimated incrementally in both algorithms.1 
While the pose estimation of VO results in high precision 
in a slow motion, that of INS results in high accuracy in 
a rapid motion. Therefore, VIO, which is the fusion of 
VO and INS, complements the strengths of each sensor 
and improves the performance of pose estimation. 

Among various VIO algorithms, Multi-State 
Constraint Kalman Filter (MSKCF) is chosen as the main 
algorithm. Different from other general VIO algorithms 
such as Extended Kalman Filter (EKF) based algorithms, 
MSCKF does not include three-dimensional feature 
positions in the filter states, which result in a drop of 
computation complexity. MSCKF uses a geometric 
constraint obtained from the poses of previous camera 

frames included in a sliding window of filter state to 
estimate the pose.2 However, the performance of 
MSCKF pose estimation is comparatively inaccurate in a 
rapid motion. To overcome this weakness, a fused 
algorithm of two-view tracking and MSCKF is proposed. 
Two-view tracking uses an optical flow measurement 
obtained from consecutive image frames in the 
measurement update. The strength of two-view tracking 
is that the pose estimation is comparatively accurate even 
in a rapid motion. Therefore, the fusion of two algorithms 
compensates for the weakness of MSCKF. 

This paper presents the performance analysis of two-
view tracking and MSCKF fusion for pose estimation 
throughout an application to the Drone Racing dataset, 
which images, linear accelerations and angular velocities 
are collected in a rapid motion.3 

2. System Model 

The error state of the fused algorithm is a combination of 
two-view tracking and MSCKF error state. The error 
state of two-view tracking is described as Eq.(1).4 
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where 𝑝ீ
ீ  is a position error expressed in a global-frame, 

𝑣ீ
  is a velocity error expressed in a body-frame, 𝜃෨ீ is 

an attitude error expressed in a global-frame, 𝑏෨  is an 
accelerometer bias error, 𝑏෨ is a gyroscope bias error and 
𝛼  is an inverse-scene-depth error. The error state of 
MSCKF system model is described as Eq.(2).5 
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𝑋෨ூெ  is IMU error state, described as Eq.(3), 𝑋෨௦௪  is 
temporarily included previous camera pose error state in 
the sliding window, described as Eq.(4), 𝑣ீ

ீ  is a velocity 
error expressed in a global-frame, 𝑝ீಿ

ீ  and 𝜃෨ீಿ are N-
th camera position error and attitude error in the sliding 
window. The error state of the fused algorithm is 
described as Eq.(5). For the convenience of Jacobian 
derivation, 𝑣ீ

  is chosen instead of 𝑣ீ
ீ . 
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The system model is described as Eq.(6). 
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where 𝑛 and 𝑛 are zero-mean, white Gaussian noise of 
accelerometer and gyroscope, respectively, and 𝑛௪ and 
𝑛௪  are random walk rate of accelerometer and 
gyroscope, respectively. 

3. Measurement Model 

The measurement model of the fused algorithm is divided 
into two-view tracking and MSCKF measurement model. 
The measurement update related term of two-view 
tracking is described as Eq.(7). 
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where, 𝑦 is a two-dimensional innovation term, 𝑀 is a 
nullspace reprojection matrix and 𝜔  is a gyroscope 
measurement. The measurement update related term of 
MSCKF is described as Eq.(8).5 
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where 𝑟
ሺሻ  is a measurement residual, 𝑧

ሺሻ  is a 
measurement, �̂�

ሺሻ is a reference, 𝐻

ሺሻ and 𝐻

ሺሻ are state 
and feature position Jacobians of 𝑧

ሺሻ, respectively, 𝑋෨ is 
the error state, 𝑝ீ

ீ  is a feature position error and 𝑛
ሺሻ is 

a noise vector. Residuals for each previous camera 
frames in Eq.(8) are stacked up to form Eq.(9) and 
reprojected on the left nullspace to form Eq.(10) and 
Eq.(11). Residuals for each feature are finally stacked up 
and Hଡ଼ is used in the EKF update. 

The keypoint of the fused algorithm is that both two-
view tracking and MSCKF measurement updates 
proceed during the pose estimation. MSCKF proceeds 
the measurement update when one of the two conditions 
satisfies. Those two conditions are a failure of feature 
tracking and an excess of the size of the sliding window. 
However, the minimum number of tracks is also assigned 
in order to avoid an error in residuals. The fused 
algorithm follows the same measurement trigger as 
MSCKF, but two-view tracking measurement update 
proceeds when there are exactly two tracks in the sliding 
window. For example, as shown in Fig. 1., when N equals 
two, the optical flow is measured from CN and CN-1 
camera frames included in the sliding window. 
 

 

Fig. 1.  Two-View Tracking Frames in the Sliding Window 

4. Performance Analysis 

The performance analysis of the fused algorithm is 
proceeded using the Drone Racing dataset, which 
provides images, accelerometer and gyroscope 
measurements and ground truth collected using a laser 
tracking system.3 The total distance traveled by MAV in 
the dataset is 270.7448 m and the maximum 
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instantaneous velocity is 25.0499 m/s.  Other drone flight 
datasets such as EuRoC and Zurich Urban MAV dataset 
exist, but the Drone Racing is chosen because only this 
dataset provides measurements collected by an 
aggressive drone flight. The performance difference 
between MSCKF and the fused algorithm is expected to 
be clearly observable in bad condition in terms of the 
visual environment. 

For the performance analysis, the altitude error and the 
position error of the fused algorithm are compared to 
those of MSCKF. The result is shown in Table 1, Fig.2 
and Fig.3. The attitude error has improved from 0.2670 
rad to 0.2306 rad, and the position error has improved 
from 6.9418 m to 6.4576 m, which are 13.6 % and 7.0 % 
improvement, respectively. 

Table 1.  Root Mean Square Error (RMSE) 

 MSCKF Fused 
Attitude [rad] 0.2670 0.2306 
position [m] 6.9418 6.4576 

 
The improvement of both attitude and position error is 

a result of the difference in the EKF update. In MSCKF, 
the measurement update does not proceed when the 
number of tracks in the sliding window is less than three. 
However, in the fused algorithm, the measurement 
update proceeds even when there are two tracks in the 
sliding window and two-view measurement update 
proceeds instead of MSCKF measurement update. 
Compared to other drone flight datasets, the Drone 
Racing dataset provides lower sized images, which fewer 
features are detected. MSCKF measurement update using 
a few features results in low accuracy. However, in the 
same condition, two-view tracking measurement update 
results in more accurate pose estimation compared to that 
of MSCKF. Therefore, the additional two-view tracking 
measurement update in MSCKF measurement update 
improves the performance of pose estimation of MAV in 
an aggressive flight condition. 

 

Fig. 2.  Three-dimensional Attitude Error of Drone Racing 

 

Fig. 3.  Three-dimensional Position Error of Drone Racing 

5. Conclusion 

This paper presents the performance analysis of the 
fusion of two-view tracking and MSCKF for the pose 
estimation. The error state of the fused algorithm is 
selected to be the combination of two-view tracking and 
MSCKF error state. The system model and the 
measurement update related terms are newly derived 
since the velocity error is expressed in a body-frame. 
MSCKF measurement update proceeds when one of two 
conditions is triggered and two-view tracking 
measurement update proceeds when there are two tracks 
in the sliding window. The fused algorithm results in an 
improvement of the pose estimation. 
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