

© The 2019 International Conference on Artificial Life and Robotics (ICAROB2019), Jan. 10-13, B-Con Plaza, Beppu, Oita, Japan

Case Study on Communication between Embedded Linux Environment and Microcontroller

Ziheng Gao, Yizhun Peng *, Shuo Wang

College of Electronic Information and Automation,Tianjin University of Science and Technology,
China

Binhai International Advanced Structural Integrity Research Centre Tianjin University of Science
and Technology,China

E-mail: * pengyizhun@tust.edu.cn

Abstract

In many embedded development scenarios, we need to combine the real-time microcontroller and non-real-time
embedded Linux environment for collaborative development. In a high real-time environment (such as: vehicles,
production lines), it can complete kinds of features relying on huge Linux ecosystem, such as hot fixable functional
modules, improved network communication, easier OTA firmware updates, more efficient algorithm capabilities,
and more objects. This paper aims to enumerate and explore several methods that can be used to implement similar
duplex communications. For ease of understanding, a single-board computer called Raspberry Pi running Raspbian
Linux and an STM32F103 32-bit ARM microcontroller are used in experiment.

Keywords: communication, embedded, real-time, Raspberry Pi, ARM

1. Introduction

IoT (Internet of things) has become closer to people’s daily
life, such as smart speakers and remoting control table
lamps. As the working basis of the intelligent equipment
to meet the products’ demands, embedded development is
more complicated. Lots of terminal equipment need to
connect the Internet to run high computational tasks and
high IO tasks. They will be used to develop deep learning
models online for predictions.

Excellent native support for huge ecosystems and
asynchronous tasks in an embedded Linux environment
can accommodate all of the above. In addition, native
compatibility of different types of scripting languages
optimizes workflow.

However, traditional embedded development must
operate in a real-time environment to meet reliability and
other requirements. Obviously, the contradiction between
them cannot be solved in the same environment. Therefore,

using two controllers to process real-time and non-real-
time tasks separately is a good solution.

Communication is an inevitable problem between two
controllers. This article focuses on how to build a complete
and reliable communication solution. We ran the Raspbian
Linux distribution of the single-board computer Raspberry
Pi and the 32-bit ARM microcontroller-STM32F103 as an
example. It is worth mentioning that Raspbian is a
customized version of Debian. It was created to
accommodate the ARM commands of the Raspberry pi.
Essentially, it's a full-featured Linux distribution.

2. Choices

The communication protocol is an inevitable part when
it comes to communication. The protocol is also divided
into application layer protocols and underlying protocols
according to the level. Firstly, we will consider the most
comprehensive multi-layer communication protocol stack,

292

Ziheng Gao, Yizhun Peng, Shuo Wang

© The 2019 International Conference on Artificial Life and Robotics (ICAROB2019), Jan. 10-13, B-Con Plaza, Beppu, Oita, Japan

such as the TCP/IP1 stack, which is used widely in Internet,
and the CAN bus, which is commonly used in industrial
control. This article will introduce four communication
protocols.
2.1 Ethernet protocol

Ethernet is one of the most popular computer LAN
technologies2. The advantage is that the ecosystem and
protocol stack is mature. For example, TCP/IP is well
known, but its standard topology is the bus topology.
2.2 CAN bus

The Controller Area Network is a feature-rich automotive
bus standard based on the Broadcast Communication
Mechanism. According to the content of the message,
message Identifier is used to define the priority of content
and messages for delivery. It is a multi-master serial bus
standard for connecting ECUs4. The CAN network
includes multiple ECU nodes which can be input/output
devices, embedded devices that include CAN
interchangers or gateways. It is concluded that CAN bus
communication is generally applicable in large industrial
equipment, but the disadvantages in the underlying two-
machine communication are similar to Ethernet.
2.3 I²C bus

Inter-Integrated Circuit is a serial communication bus that
uses a master-slave architecture. For simple two-wire
communication, serial data line (SDA) and serial clock
line (SCL) are recommended to use when the amount of
data is not large and data structure is not responsible.
2.4 Serial communication bus: SPI and UART

Serial communication is essentially on the bus and other
data channels and continuously performs the
communication process of the above single process. The
corresponding method is parallel communication. This
article only describes two examples of 5SPI and UART.
2.4.1 Serial Peripheral Interface

SPI is a high-speed, full-duplex, synchronous, serial
communication bus, working in master-slave mode,
independent transceiver. The SPI bus consists of SCLK
(serial clock), SDI (serial data input) and SDO (serial data
output). CS.SPI is a protocol that allows a master device
to initiate a synchronous communication with serval slave
devices. The data lines of the SPI for input and output are
independent, so it is allowed to complete the input and
output of data at the same time.
2.4.2 Universal Asynchronous Receiver Transmitter

UART is a two-wire, full-duplex, asynchronous serial
communication bus. There are only two lines, one for
sending and one for receiving. The timing requirements for
both parties are relatively strict, and the communication
speed is not very fast. However, it is simple and easy, and
it is suitable for transmitting data between two better-
performing controllers.

3. CASE

3.1 Choose plan

The use of serial communication UART to implement the
two-machine communication we describe is a very cost-
effective opinion. Below, we will explain how to make this
solution practical by designing a simple two-machine
communication protocol. We will use the above-
mentioned single-board computer Raspberry Pi and
STM32F103 microcontroller to demonstrate.
3.2 Implementation plan

3.2.1 Configuration

On the Raspberry Pi8, we will use the highly acclaimed
Python to finish the programming. The Raspberry Pi 3
Model B has two sets of UART serial ports, one hardware
serial port for Bluetooth, and one software serial port for
GPIO pins. For performance considerations, we have to
exchange them. Then, we need bind the GPIO pins to the
hardware serial port instead of BT. Specific steps are as
follows9:
A. Turn off the onboard Bluetooth feature. The steps are as
described above.
B. Restore the serial port and set it as a universal serial port.
Edit document: /boot/config.txt at the end of the document,
add a statement: dtoverlay=pi3-miniuart-bt .
Edit document:/boot/cmdline.txt,next step replace the

contents of the document with the following:

dwc_otg.lpm_enable=0

console=ttyl

root=/dev/mmcblk0p2

rootfstype=ext4

elevator=deadline

fsck.repair=yes rootwait
Above we have completed the basic configuration of the
serial port.

293

Case Study on Communication

© The 2019 International Conference on Artificial Life and Robotics (ICAROB2019), Jan. 10-13, B-Con Plaza, Beppu, Oita, Japan

3.2.2 Programming

A. Reference the pyserial6 library for serial
programming. It has been shown in the figure1.

PySerial encapsulates the serial communication module
and supports different platforms such as Linux, Windows
and BSD. Also, it is a python support module. This module
encapsulates the access rights of the serial port. The
module named “Stand” will automatically select the
appropriate backend.

B. On the STM327, the communication part code is as
figure 2.

Fig1. pyserial library for serial programming

Figure 2: the communication part code

3.2.3 Design

A. After solving the problem of how to initiate
communication on both sides, it is necessary to design a
set of application layer communication protocol to unify
the standard of multi-party hardware communication. In
order to make the communication content can be
recognized bilaterally. Also, easy to increase or decrease
the modification function. This article thinks that the
protocol standard needs to meet the following.

 The unit of communication content is a message
frame, including the frame header, the message body,
and the end of the frame, all of which are ASCII
characters.

 The message body includes a variety of data, each of
which has its corresponding flag, data body, separator
between the data and the data body, and a separator
between the data.

 Each type of data is distinguished by a identifier, and
the meaning and data type of its representative are
negotiated in advance.

 The final assembled message frame can be divided,
recognized, converted, and processed in the form of
a string or an array of characters as both ends.

B. As an example, this article will introduce a set of
application layer communication protocols designed in a
vehicle project.
Basic definition of interface:

a. Serial communication using the UART protocol, the
baud rate is 115200.

b. In the form of a packet, the header is defined as
*(ASCII code 0x2A) and the trailer is defined as # (ASCII
code ox23)
The data in data packet must have an identifier,

a)Which is any uppercase letter in ASCII, followed by
the data body.

b) The data identifier is separated from the data body by
‘:’ (ASCII code 0x3A)

c) Multiple data is separated by ‘,’ (ASCII code 0x2C)
in the same package.

294

Ziheng Gao, Yizhun Peng, Shuo Wang

© The 2019 International Conference on Artificial Life and Robotics (ICAROB2019), Jan. 10-13, B-Con Plaza, Beppu, Oita, Japan

Figure 3: The custom identifier
Data return confirmation and synchronization: In order to
make the communication reliable, two ends can send the
packet back to the secondary station after receiving the
data that needs to be consistent at both ends. Besides, aim
to synchronize the upper and lower data, the logical state
can still obtain the underlying state after the restart, and the
bottom layer should send all the latest data to the logical
end the synchronization data frame flag ‘Z’ should be
added to the header of the post back message. The certain
example is as figure 4.

 Figure 4.Certain example of programming

4. Conclusion

The above is an implementation scheme that we proposed
and completed. We use the UART serial port as the

transport layer protocol to design the application layer
protocol.

5. Acknowledgement

This research was partially supported by Student’s
Platform for Innovation and Entrepreneur Training
Program, the Ministry of education of China
（201810057019）. We are also very grateful to Yang
Jiasheng for his help in the revision of the manuscript.

REFERENCE:

1. LiMing. Research and development of embedded TCP/IP
protocol stack. Computer engineering and Application, 2002,
(8): 18-19

2. IEEE 802.3-2015 Ethernet protocol official document
3. CJ1W Defined CAN Unit Operational Manual
4. Wang Weixin. Principle and interface technology of single

chip microcomputer: China Agriculture Press,2013.08
5. Song Qinhua. Shipboard Electronic Countermeasure.

Comparison of online programming mechanism
between SPI and UART, 2015, (10): 66-67

6. pySerial 3.0 documentation.
https://pythonhosted.org/pyserial/.

7. Wang Wei. Design of communication system without
host computer based on STM32F103. Tianjin
Polytechnic University,2017.

8. Raspberry official technical documents.
https://www.raspberrypi.org/blog/.

9. THE RASPBERRY PI UARTS.
https://www.raspberrypi.org/documentation/configurat
ion/uart.md.

295

