

© The 2018 International Conference on Artificial Life and Robotics (ICAROB2018), Feb. 1-4, B-Con Plaza, Beppu, Oita, Japan

Negative Test Case Generation from an Extended Place/Transition Net-Based Mutants

Tomohiko Takagi
Faculty of Engineering, Kagawa University

2217-20 Hayashi-cho, Takamatsu-shi, Kagawa 761-0396, Japan

Tetsuro Katayama
Institute of Education and Research for Engineering, University of Miyazaki

1-1 Gakuen-kibanadai nishi, Miyazaki-shi, Miyazaki 889-2192, Japan
E-mail: takagi@eng.kagawa-u.ac.jp, kat@cs.miyazaki-u.ac.jp

Abstract

In negative testing, the large state space and feasibility problems cause the difficulty of generating negative test cases
from EPN (Extended Place/transition Net)-based mutants. This paper shows the overview of EPN-based mutants,
and the details of our negative test case generation technique. In the technique using ACO (Ant Colony Optimization),
ants heuristically search better paths (i.e., negative test cases) to find foods (i.e., intended failures) on a field (i.e., an
EPN-based mutant).

Keywords: Software Testing, Negative Testing, Model-Based Testing, Test Case Generation

1. Introduction

EPN (Extended Place/transition Net)-based mutants are
formal behavioral models of software that contain
intended failures.1 In negative testing, well-selected
EPN-based mutants are used to generate negative test
cases to confirm that software does not include serious or
possible failures. However, the large state space and
feasibility problems on EPNs cause the difficulty of
generating the negative test cases from EPN-based
mutants.

The aim of this research is to construct a technique in
which effective negative test cases to reach intended
failures are generated from EPN-based mutants. In this
technique using ACO (Ant Colony Optimization), ants
heuristically search better paths (that is, negative test
cases) to find foods (that is, intended failures) on a field
(that is, an EPN-based mutant). This paper shows the
overview of EPN-based mutants in section 2, the details
of our negative test case generation technique in section

3, discussion in section 4, and, conclusion and future
work in section 5.

2. Overview of EPN-Based Mutants

This section shows the overview of EPN-based mutants.
An EPN is a PN (Place/transition Net) that is

extended by VDM++ (one of specification description
languages that are used in VDM)2 in order to formally
define actions and guards on transitions, and it is suitable
to represent the essential behavior of complex software.
A simple example of an EPN is given in Fig. 1. This
example has three places (p1, p2, and p3) and four
transitions (t1, t2, t3, and t4), and some transitions have
guards and actions. For example, t3 has "v>=p" as a guard
and "v:=v−p;" as an action. v is an instance variable of
nat type that was initialized to 0, and p is an input
parameter (an argument) of nat type for t3. When p2
contains one or more tokens and also the guard of t3 is
satisfied, the firing of t3 can be done with the execution
of its action. Thus guards cause the feasibility problem

513

Tomohiko Takagi, Tetsuro Katayama

© The 2018 International Conference on Artificial Life and Robotics (ICAROB2018), Feb. 1-4, B-Con Plaza, Beppu, Oita, Japan

when specific transitions need to be selected to construct
good test cases. Additionally, a state is expressed as a set
of a marking (an array of the number of tokens on places)
and values of instance variables, and therefore the
introduction of instance variables accelerates the large
state space problem.

EPN-based mutants (hereinafter, referred to as
mutant models) are EPNs that contain intended failures
of software, and they can be constructed by applying one
or more existing mutation operators to an EPN that
represents the expected behavior of software (hereinafter,
referred to as an original model). Fig. 2 shows a simple
example of a mutant model that was constructed by an
arc insertion operator.

3. Negative Test Case Generation Technique

A negative test case in this study is a sequence of
successive markings and transitions that starts from an
initial marking and ends with an occurrence of an
intended failure. It can be created based on a mutant
model that were discussed in the previous section. For
example, the mutant model shown in Fig. 2 can produce
a negative test case "{[0,2,0], v=0} → t1(2) → {[1,1,0],
v=2} → t3(1) → {[1,1,1], v=1}". The last marking of this
example negative test case originally should be [1,0,1],
and it succeeds in reaching the intended failure. Effective
negative test cases are created as shorter sequences to
reach intended failures, so as to be able to be executed by
test engineers within a limited period of time. However,
the large state space and feasibility problems that were
discussed in the previous section cause the difficulty of
constructing such negative test cases.

In this section, we propose an effective negative test
case generation technique using ACO. ACO is one of
meta-heuristic algorithms, and it is suitable to solve
complex and time-consuming problems. In this technique,
ants heuristically search better paths (that is, shorter
negative test cases) to find foods (that is, intended
failures) on a field (that is, a mutant model).

This technique consists of the following six steps.
(i) a ants are created (a is a natural number), and they

are placed onto an initial marking of a mutant model.
Each ant remembers the initial values of instance
variables of the mutant model.
For example, when the mutant model shown in Fig.
2 is given to this technique, ants are placed onto
[0,2,0], and they remember "v=0".

(ii) Each ant starts searching a path as follows.
First, an ant finds all feasible transitions on its
current state (that is, a marking that the ant currently
stays on, and values of instance variables that the ant
remembers). If the ants find a new 3-tuple (from-
marking, transition, to-marking), the pheromone
value of the 3-tuple is initialized to an initial
pheromone value τ0 (τ0 is 0 or a positive real number).
The ant then selects a feasible transition at random
in proportion to the pheromone values of all feasible
3-tuples, and goes to a next marking. If the selected
transition has actions, the ant executes the actions
and updates the values of instance variables that the
ant remembers.
For example, in Fig. 2, an ant on the state {[1,1,0],
v=2} finds feasible transitions t1, t2 and t3. When the
pheromone values of the 3-tuples ([1,1,0], t1, [2,0,0]),
([1,1,0], t2, [0,2,0]) and ([1,1,0], t3, [1,1,1]) are τ1, τ2
and τ3, respectively, the probabilities of selecting t1,
t2 and t3 are τ1/(τ1+τ2+τ3), τ2/(τ1+τ2+τ3) and
τ3/(τ1+τ2+τ3), respectively.
The ant repeats the above-mentioned selection of a
transition, until an intended failure has appeared or
the length of a path from the initial marking (that is,
the number of transitions that the ant has selected)
has reached l (l is a natural number) or the ant has
reached a final marking (the definition of a final
marking is optional). In this technique, an intended

Fig. 1. Simple example of an EPN.

Fig. 2. Simple example of EPN-based mutants.

p3

t4

t3

p1 p2

t1

t2 (nat p) [v>=p] / v:=v-p;

(nat p) [] / v:=v+p; instance variables
public v : nat := 0;

changed

p3

t4

t3

p1 p2

t1

t2 (nat p) [v>=p] / v:=v-p;

(nat p) [] / v:=v+p; instance variables
public v : nat := 0;

514

 Negative Test Case Generation

© The 2018 International Conference on Artificial Life and Robotics (ICAROB2018), Feb. 1-4, B-Con Plaza, Beppu, Oita, Japan

failure appears if there are differences on markings,
values of instance variables, and feasible transitions
between the mutant model and its original model.

(iii) If there are ants that have succeeded in reaching an
intended failure (hereinafter, referred to as effective
ants), an ant that has found the shortest path among
the effective ants (hereinafter, referred to as an
iteration-best ant) is found. If the path of the
iteration-best ant is shorter than the path of a best-
so-far ant (that is, an effective ant that has found the
shortest path through all the previous iterations in
this technique), the iteration-best ant becomes a new
best-so-far ant, and it is kept as a candidate solution.

(iv) If the number of iterations of this technique reaches
i (i is a natural number), the path of the best-so-far
ant is determined as a final solution (that is, the best
negative test case on the mutant model), but if a best-
so-far ant does not exist (that is, if there are no
effective ants through all iterations), it is concluded
that the mutant model cannot produce a negative test
case.

(v) The pheromone values of all 3-tuples that have been
found are updated by the following equation.

 τt(x +1) = (1 − ρ)⋅τt(x) + ∆τtk (1)
a

k=1

In Eq. (1), τt(x) expresses a pheromone value of a 3-
tuple t in xth iteration. ρ is a positive real number that
is less than 1.0, and it means an evaporation rate of
pheromone. ∆τtk expresses a pheromone value that
an ant k adds onto a 3-tuple t, and it is given by the
following equation.

 ∆τtk=
1
Lk

 , if the ant k is effective and t∈Pk
0 , otherwise (2)

In Eq. (2), Pk is a path that has been found by an ant
k, and Lk is the length of Pk (that is, the number of
transitions of Pk).

(vi) All the ants are removed from the markings of the
mutant model, and this technique returns to step (i).

This technique has five parameters (a, τ0, l, i, and ρ)
to adjust its performance. There are no parameter values
that are appropriate for all software development projects,
and therefore test engineers need to determine them by
using a trial-and-error method.

4. Discussion

We developed a prototype of a tool that supports this
technique, and applied it to examples on a trial basis. In

this section, we discuss the effectiveness of this
technique based on its experimental results.

The examples are based on an EPN of an electronic
money charging system that was introduced to discuss a
positive testing technique in Ref. 3. That is, four mutant
models were manually constructed by applying four
kinds of mutation operators to the EPN. The mutation
operators used in this experiment were two kinds of
model-based mutation operators (arc insertion and arc
omission) and two kinds of code-based mutation
operators (numeric constant replacement and inequality
sign replacement), and they were applied to different
transitions of the EPN.

Subsequently, we applied the prototype of the tool to
each mutant model, and successfully got a short negative
test case from each mutant model. The processing time
per one mutant model was about 80 seconds. The
environment of this experiment was a laptop computer
with i7-4650U processor (1.70 GHz, up to 3.30 GHz) and
8 GB RAM. The parameter values of this technique is
a=2, τ0=0.1, l=20, i=50, and ρ=0.03.

The processing time will be acceptable to most of test
engineers. However, the performance of this technique
depends on the structure of a mutant model,
characteristics of an intended failure, and parameter
values of this technique. Thus further experiments are
expected in future study. Test engineers need to
determine the parameter values for this technique by
using a trial-and-error method, but it may not be easy.
Additionally, the quality of negative test cases depends
also on the quality of mutant models, which should be
discussed in another study.

5. Conclusion and Future Work

In this paper, we proposed a new technique to generate
an effective negative test case from an EPN-based mutant.

The negative test case generation from an EPN-based
mutant is a complex problem, since guards and instance
variables in an EPN-based mutant cause the feasibility
problem and the large state space problem, respectively.
Therefore, ACO that is one of meta-heuristic algorithms
was introduced into this technique. In this technique, ants
heuristically search better paths (that is, shorter negative
test cases) to find foods (that is, intended failures) on a
field (that is, an EPN-based mutant). We developed a
prototype of a tool that supports this technique, and
applied it to examples on a trial basis. We found that short

515

Tomohiko Takagi, Tetsuro Katayama

© The 2018 International Conference on Artificial Life and Robotics (ICAROB2018), Feb. 1-4, B-Con Plaza, Beppu, Oita, Japan

negative test cases could be generated within a
reasonable time. However, the performance of this
technique depends on several conditions, and further
experiments are expected in future study. Also, it may not
be easy for test engineers to determine the parameter
values for this technique.

There is still room to improve the performance of this
technique. For example, we plan to add a pheromone
value to each sequence of successive 3-tuples, in order to
enable ants to search paths effectively. Subsequently, we
will apply the improved technique to non-trivial
examples in order to evaluate its effectiveness.

Acknowledgements

This work was supported by JSPS KAKENHI Grant
Number 26730038.

References
1. T. Takagi, S. Morimoto and T. Katayama, Development of

a Tool for Extended Place/Transition Net-Based Mutation
Testing and Its Application Example, Journal of Robotics,
Networking and Artificial Life (JRNAL), Vol.4, No.2 (Sept.
2017), pp.168-174.

2. J. Fitzgerald, P.G. Larsen, P. Mukherjee, N. Plat and M.
Verhoef, Validated Designs for Object-Oriented Systems,
(Springer-Verlag London, 2005).

3. T. Takagi, A. Akagi and T. Katayama, Heuristic Test Case
Generation Technique Using Extended Place/Transition
Nets, Applied Computing and Information Technology,
Studies in Computational Intelligence, Vol.727 (2017),
pp.103-115.

516

