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Abstract 

In negative testing, the large state space and feasibility problems cause the difficulty of generating negative test cases 
from EPN (Extended Place/transition Net)-based mutants. This paper shows the overview of EPN-based mutants, 
and the details of our negative test case generation technique. In the technique using ACO (Ant Colony Optimization), 
ants heuristically search better paths (i.e., negative test cases) to find foods (i.e., intended failures) on a field (i.e., an 
EPN-based mutant). 
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1. Introduction 

EPN (Extended Place/transition Net)-based mutants are 
formal behavioral models of software that contain 
intended failures.1 In negative testing, well-selected 
EPN-based mutants are used to generate negative test 
cases to confirm that software does not include serious or 
possible failures. However, the large state space and 
feasibility problems on EPNs cause the difficulty of 
generating the negative test cases from EPN-based 
mutants. 

The aim of this research is to construct a technique in 
which effective negative test cases to reach intended 
failures are generated from EPN-based mutants. In this 
technique using ACO (Ant Colony Optimization), ants 
heuristically search better paths (that is, negative test 
cases) to find foods (that is, intended failures) on a field 
(that is, an EPN-based mutant). This paper shows the 
overview of EPN-based mutants in section 2, the details 
of our negative test case generation technique in section 

3, discussion in section 4, and, conclusion and future 
work in section 5. 

2. Overview of EPN-Based Mutants 

This section shows the overview of EPN-based mutants. 
An EPN is a PN (Place/transition Net) that is 

extended by VDM++ (one of specification description 
languages that are used in VDM)2 in order to formally 
define actions and guards on transitions, and it is suitable 
to represent the essential behavior of complex software. 
A simple example of an EPN is given in Fig. 1. This 
example has three places (p1, p2, and p3) and four 
transitions (t1, t2, t3, and t4), and some transitions have 
guards and actions. For example, t3 has "v>=p" as a guard 
and "v:=v−p;" as an action. v is an instance variable of 
nat type that was initialized to 0, and p is an input 
parameter (an argument) of nat type for t3. When p2 
contains one or more tokens and also the guard of t3 is 
satisfied, the firing of t3 can be done with the execution 
of its action. Thus guards cause the feasibility problem 
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when specific transitions need to be selected to construct 
good test cases. Additionally, a state is expressed as a set 
of a marking (an array of the number of tokens on places) 
and values of instance variables, and therefore the 
introduction of instance variables accelerates the large 
state space problem. 

EPN-based mutants (hereinafter, referred to as 
mutant models) are EPNs that contain intended failures 
of software, and they can be constructed by applying one 
or more existing mutation operators to an EPN that 
represents the expected behavior of software (hereinafter, 
referred to as an original model). Fig. 2 shows a simple 
example of a mutant model that was constructed by an 
arc insertion operator. 

3. Negative Test Case Generation Technique 

A negative test case in this study is a sequence of 
successive markings and transitions that starts from an 
initial marking and ends with an occurrence of an 
intended failure. It can be created based on a mutant 
model that were discussed in the previous section. For 
example, the mutant model shown in Fig. 2 can produce 
a negative test case "{[0,2,0], v=0} → t1(2) → {[1,1,0], 
v=2} → t3(1) → {[1,1,1], v=1}". The last marking of this 
example negative test case originally should be [1,0,1], 
and it succeeds in reaching the intended failure. Effective 
negative test cases are created as shorter sequences to 
reach intended failures, so as to be able to be executed by 
test engineers within a limited period of time. However, 
the large state space and feasibility problems that were 
discussed in the previous section cause the difficulty of 
constructing such negative test cases. 

In this section, we propose an effective negative test 
case generation technique using ACO. ACO is one of 
meta-heuristic algorithms, and it is suitable to solve 
complex and time-consuming problems. In this technique, 
ants heuristically search better paths (that is, shorter 
negative test cases) to find foods (that is, intended 
failures) on a field (that is, a mutant model). 

This technique consists of the following six steps. 
(i) a ants are created  (a is a natural number), and they 

are placed onto an initial marking of a mutant model. 
Each ant remembers the initial values of instance 
variables of the mutant model. 
For example, when the mutant model shown in Fig. 
2 is given to this technique, ants are placed onto 
[0,2,0], and they remember "v=0". 

(ii) Each ant starts searching a path as follows. 
First, an ant finds all feasible transitions on its 
current state (that is, a marking that the ant currently 
stays on, and values of instance variables that the ant 
remembers). If the ants find a new 3-tuple (from-
marking, transition, to-marking), the pheromone 
value of the 3-tuple is initialized to an initial 
pheromone value τ0 (τ0 is 0 or a positive real number). 
The ant then selects a feasible transition at random 
in proportion to the pheromone values of all feasible 
3-tuples, and goes to a next marking. If the selected 
transition has actions, the ant executes the actions 
and updates the values of instance variables that the 
ant remembers. 
For example, in Fig. 2, an ant on the state {[1,1,0], 
v=2} finds feasible transitions t1, t2 and t3. When the 
pheromone values of the 3-tuples ([1,1,0], t1, [2,0,0]), 
([1,1,0], t2, [0,2,0]) and ([1,1,0], t3, [1,1,1]) are τ1, τ2 
and τ3, respectively, the probabilities of selecting t1, 
t2 and t3 are τ1/(τ1+τ2+τ3), τ2/(τ1+τ2+τ3) and 
τ3/(τ1+τ2+τ3), respectively. 
The ant repeats the above-mentioned selection of a 
transition, until an intended failure has appeared or 
the length of a path from the initial marking (that is, 
the number of transitions that the ant has selected) 
has reached l (l is a natural number) or the ant has 
reached a final marking (the definition of a final 
marking is optional). In this technique, an intended 

 

Fig. 1. Simple example of an EPN. 

 

 

Fig. 2. Simple example of EPN-based mutants. 
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failure appears if there are differences on markings, 
values of instance variables, and feasible transitions 
between the mutant model and its original model. 

(iii) If there are ants that have succeeded in reaching an 
intended failure (hereinafter, referred to as effective 
ants), an ant that has found the shortest path among 
the effective ants (hereinafter, referred to as an 
iteration-best ant) is found. If the path of the 
iteration-best ant is shorter than the path of a best-
so-far ant (that is, an effective ant that has found the 
shortest path through all the previous iterations in 
this technique), the iteration-best ant becomes a new 
best-so-far ant, and it is kept as a candidate solution. 

(iv) If the number of iterations of this technique reaches 
i (i is a natural number), the path of the best-so-far 
ant is determined as a final solution (that is, the best 
negative test case on the mutant model), but if a best-
so-far ant does not exist (that is, if there are no 
effective ants through all iterations), it is concluded 
that the mutant model cannot produce a negative test 
case. 

(v) The pheromone values of all 3-tuples that have been 
found are updated by the following equation. 

 τt(x +1) = (1 − ρ)⋅τt(x) + ∆τtk                     (1)
a

k=1

 

In Eq. (1), τt(x) expresses a pheromone value of a 3-
tuple t in xth iteration. ρ is a positive real number that 
is less than 1.0, and it means an evaporation rate of 
pheromone. ∆τtk  expresses a pheromone value that 
an ant k adds onto a 3-tuple t, and it is given by the 
following equation. 

 ∆τtk=
1
Lk

 ,   if the ant k is effective and t∈Pk    
0 ,   otherwise                                                 (2) 

In Eq. (2), Pk is a path that has been found by an ant 
k, and Lk is the length of Pk (that is, the number of 
transitions of Pk). 

(vi) All the ants are removed from the markings of the 
mutant model, and this technique returns to step (i). 

This technique has five parameters (a, τ0, l, i, and ρ) 
to adjust its performance. There are no parameter values 
that are appropriate for all software development projects, 
and therefore test engineers need to determine them by 
using a trial-and-error method. 

4. Discussion 

We developed a prototype of a tool that supports this 
technique, and applied it to examples on a trial basis. In 

this section, we discuss the effectiveness of this 
technique based on its experimental results. 

The examples are based on an EPN of an electronic 
money charging system that was introduced to discuss a 
positive testing technique in Ref. 3. That is, four mutant 
models were manually constructed by applying four 
kinds of mutation operators to the EPN. The mutation 
operators used in this experiment were two kinds of 
model-based mutation operators (arc insertion and arc 
omission) and two kinds of code-based mutation 
operators (numeric constant replacement and inequality 
sign replacement), and they were applied to different 
transitions of the EPN. 

Subsequently, we applied the prototype of the tool to 
each mutant model, and successfully got a short negative 
test case from each mutant model. The processing time 
per one mutant model was about 80 seconds. The 
environment of this experiment was a laptop computer 
with i7-4650U processor (1.70 GHz, up to 3.30 GHz) and 
8 GB RAM. The parameter values of this technique is 
a=2, τ0=0.1, l=20, i=50, and ρ=0.03. 

The processing time will be acceptable to most of test 
engineers. However, the performance of this technique 
depends on the structure of a mutant model, 
characteristics of an intended failure, and parameter 
values of this technique. Thus further experiments are 
expected in future study. Test engineers need to 
determine the parameter values for this technique by 
using a trial-and-error method, but it may not be easy. 
Additionally, the quality of negative test cases depends 
also on the quality of mutant models, which should be 
discussed in another study. 

5. Conclusion and Future Work 

In this paper, we proposed a new technique to generate 
an effective negative test case from an EPN-based mutant.  

The negative test case generation from an EPN-based 
mutant is a complex problem, since guards and instance 
variables in an EPN-based mutant cause the feasibility 
problem and the large state space problem, respectively. 
Therefore, ACO that is one of meta-heuristic algorithms 
was introduced into this technique. In this technique, ants 
heuristically search better paths (that is, shorter negative 
test cases) to find foods (that is, intended failures) on a 
field (that is, an EPN-based mutant). We developed a 
prototype of a tool that supports this technique, and 
applied it to examples on a trial basis. We found that short 
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negative test cases could be generated within a 
reasonable time. However, the performance of this 
technique depends on several conditions, and further 
experiments are expected in future study. Also, it may not 
be easy for test engineers to determine the parameter 
values for this technique. 

There is still room to improve the performance of this 
technique. For example, we plan to add a pheromone 
value to each sequence of successive 3-tuples, in order to 
enable ants to search paths effectively. Subsequently, we 
will apply the improved technique to non-trivial 
examples in order to evaluate its effectiveness. 
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