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Abstract 

Due to approximations between the virtual and real world, the knowledge transfer from simulations to robots is 
problematic. As physical conditions are prone to unknown and stochastic noise sources, the predictability reduces. 
We use data experiments from 100 real robots to tune the parameters of a simulation, and later used this tuned 
simulator to improve the design of the previous robots and find the optimum robot. We compare the simulated and 
observed behavior of this robot, and discuss our results. 
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1. Introduction 

The major obstacle of researchers creating a bridge 
between computer simulations of robots and the behavior 
seen in the real world is termed the ‘reality-gap’ problem 
[1]. Although simulations can be helpful to predict 
behaviors, a few researchers in robotic simulation 
community have repeatedly warned of the dangers of 
using over-simplified tools to simulate the behavior of 
real-world robotic agents [2]. A simulation by its very 
nature involves a number of levels of abstraction from 
true physical behavior, and thus fundamentally differ 
from the real robots they are attempting to emulate.  

One common way of overcoming the reality gap for 
design of controllers is to use the notion of transferability, 
whereby it is hypothesized that different controllers will 
correspond better across the reality gap than others. The 
work of Jakobi [3] stressed the use of minimal 
simulations, which targeted areas of reality that would 

insure robust, transferable behavior, but is therefore 
limiting in terms of broad applicability. 

One successful approach to handling the reality-gap 
problem for control policy evolution is the transferability 
function, most notably employed in [4]. Under this 
framework, an additional measure aside from the 
objective function is employed which assigns a 
transferability to each potential control policy based on a 
small number of experiments in reality. They were able 
to demonstrate success in producing a transferability 
function using only 10 evaluations from the hardware in 
reality. Alternatively, rather than attempting to bridge the 
reality-gap for co-evolution of structure and control 
policy, the work conducted in [5] evolved 200 robots in 
the real world using an automated assembly and 
evaluation process. This consisted of a UR5 robotic arm, 
and a number of cubic modules, which were attached 
together using hot-melt adhesive. This experiment 
demonstrated the success of a real-world evolutionary 
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process which co-evolved both the physical structure and 
the control policy of a population of robotic agents.  

In here we use the training data of experiments 
performed in the aforementioned experimental setting [6] 
to tune the parameters governing physical interaction in 
simulation. In this data-driven approach, we design our 
simulation environment to create a stronger correlation 
with the real-world and eventually achieve better 
correlation between reality and simulation. In addition, 
we wish to demonstrate that the relationship between 
simulation and reality is dependent both on the 
morphology and the control, and thus there is no 
universal transferability function that is independent of 
the morphology. 

2. Methods 

In the first stage of work, a simulation environment 
is designed to conduct virtual experiments similar to the 
ones performed at [6], and the output of which can be 
changed with different floor parameters which describe 
the response of the environment. Then we perform a 
Principal Component Analysis (PCA) of the results from 
reality with those of simulation to evaluate how close the 
behaviors are. A training process is then applied to 
choose the next set of parameters, and the process 
repeated. The output of the process is the choice of 
parameters which gives the smallest reality-gap, i.e. those 
for which the results from reality and from simulation are 
closest together. 

2.1. Simulator and virtual model 

A plentitude of physics simulators exists, and for this 
work we oriented our choices with the references [7], and 
we eventually chose Bullet to recreate virtually 
experiments that we performed a few years ago [6]. 
Bullet handles rigid collisions with greater accuracy, and 
we avoid the main limitation of the environment – poor 
damping behavior -  due to the simplistic nature of the 
agents involved in this experiment. 

The process was performed in a similar way to the 
aforementioned model-free morphology experiment. The 
genome structure comprises of 10 numeric values per 
cube (control and morphology), with one additional 
parameter per robot which defines the total number of 
cubes. Specifics of these parameters can be found at [6]. 
The comparison between the baseline real-world 

experiments and the simulated structure can be seen in 
Fig.1. 

Fig. 1.  Comparison of the real-world construction (above) and 
the simulation created from these constructions (below). 

2.2. PCA of simulator with reality 

In addition to comparing agents between reality and 
simulation based on fitness, we can use a more advanced 
method of matching agents based on the entire trajectory 
travelled. A number of different methods of performing 
2D trajectory comparison exist, and there is an existing 
body of research into their applications in video motion 
tracking. As an example, in [8], the Hausdorff distance is 
used to express the spatial similarity between two 
trajectories. 

In here, we employ an approach developed in [9], 
based on representing a trajectory as a cluster of data 
points using it’s PCA coefficients. Given the relatively 
short length of trajectories in our experiment, and the 
large number of evaluations, we will work on the entire 
trajectory as one data cluster. The procedure while 
applying to a simulated trajectory consists of: 
1. Subsample simulated trajectory to 182 data points 
2. Translate both trajectories to start at the origin 
3. Rotate trajectories such that their vector is aligned 
4. Compute principal components and compare 

As it can be seen in Fig. 2 and 3, the main trajectory 
of the real-world experiment depicted in Fig. 2 is 
compared with nine simulated trajectories from Fig. 3. 
The simulated behaviors from Fig. 3 have different floor 
parameters, simulating different friction and restitution 
coefficients. The number above each of these nine 
trajectories indicate the PCA discrepancy to the real-
world result. The simulations from the middle row of 
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Fig.3 better approximate the real-world behavior, as not 
only the first principal component (fitness) is closer, but 
the shape of the trajectory curve is closer (better match 
with second and subsequent components. 

 

 
Fig. 2.  Trajectory observed at the real-world experiment. The 
initial position is at (0,0), and distances are in centimeters. 

 
Fig. 3. Simulated trajectories with different friction and 
restitution coefficients. The number above each of these nine 
graphs stands for the difference between this particular case and 
the real-world behavior. 

2.3. Optimizing parameters 

The interaction between the agent and the ground is 
very complicated, and increasing the friction not only 
increases the impulse given to the agent by collisions of 
the rotating face with the terrain, but also increases the 
drag on the body as the agent moves itself along the 
ground. Changes in the restitution impact the time that an 

agents body spends in contact with the terrain, and thus 
directly impact the response due to friction. 

In Fig. 4 we show a heat map of the 
friction/restitution difference between the simulated 
fitness and the real world fitness for the robot 
morphology used to create the trajectory from Fig. 2. 
This data was collected at 441 evenly spaced points 
across the specified parameter ranges. The plot displays 
much steeper gradients in regions of high friction and 
restitution, as the response to changing either of the 
parameters becomes more severe. The shape of this plot 
is dependent on the robot morphology, in this case, the 
adopted robot moves with three active faces in contact 
with the ground surface. Depending on the physical 
values, different servos can be in contact with the ground 
at different parts of the motion cycle.  

Fig. 4. Heat map of the difference between Simulated and Real 
behavior for changes in friction and restitution. The yellow area 
shows a promising region, where those parametric choices 
translate into a faithful reproduction in reality of the simulated 
trajectory. 

3. Results and Discussion 

With an optimized simulator in our hands we decided 
to conduct a Grid Search through the possible 
morphological and control combinations to create the 
best performing robot. The robot depicted in Fig. 5 
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showed the best behavior, and it was build and tested in 
the real world.  

Fig. 5. Picture of the best predicted morphology, to which the 
behavior is finally compared with the simulated behavior. 

In Fig. 6 we present the final outcome of this work. 
The comparison between the simulated trajectory and the 
real-world trajectory can be seen. Although both 
trajectories present a strong resemblance in trajectory 
shape, the simulated behavior was apparently a scaled 
down version of the real world output. One additional, 
and extremely important caveat: This resemblance in 
trajectory shape was only possible in 15% of the trials, as 
the robot followed different trajectories in other 60% of 
the cases, and in the last 25% didn’t translate at the 
testing platform (solely rotation). 

The previous result brings in question the 
deterministic approach to the Reality Gap: if the 
stochastic influence is such that a predicted behavior is 
rarely occurring, probabilistic approaches, with means 
and standard deviations of fitness values, might be a 

better solution for this problem. Although a strong 
methodology was adopted, in this work we failed to 
predict the behavior of our proposed robot, and we 
believe that this work will guide others in search of a 
similar answer. 
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Fig. 6. 
The 
difference 
between 
simulated 
and real-
world 
trajectories, 
and the low 
repeatability 
of the results 
puts in 
question the 
efficacy of 
deterministic 
approaches. 
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