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Abstract 

The problem of sequencing and scheduling arriving aircraft landing is commonly known as aircraft landing problem (ALP). 
This problem, due to various constraints such as the number of arriving aircrafts, the number of runways, the mode of 
runway operation, the type of arriving aircrafts, the minimum separation between each arriving aircraft, and the weather 
condition, is considered to be a NP-hard problem. Therefore, it is almost impossible to compute every possible solution and 
computational intelligence methods had been adopted to solve ALP. In this paper, we review the computational intelligence 
techniques used in ALP. The main techniques include the evolutionary algorithms namely; genetic algorithm, genetic 
programming, scatter search and bionomic algorithm, the swarm intelligence algorithms like particle swarm optimization 
and ant colony optimization and also other methods such as the constrained position shifting and dynamic programming. 

Keywords— aircraft landing problem; computational intelligence; evolutionary algorithms; swarm intelligence; scheduling; 
runway operation

1. Introduction 

Over the years, many studies had been conducted in the 
field of air traffic control. Since the aviation industry is 
expanding, a need for closer attention to this field has arisen. 
The complexity of air traffic operation is motivated by the 
increase in air traffic volume every year. In Europe and US, 
increase in air traffic demand is expected to double in the next 
15 years [1]. In Malaysia, according to Malaysian Ministry of 
Transport an increase of 2.7% was reported in term of total 
commercial aircraft movements handled by Malaysian airport 
in 2015 compared to 2014 [2]. 

One of the important task in air traffic control is managing 
the air traffic operations for aircraft take-off and landing. This 
task is handled by air traffic controllers. The controllers 
determine which aircraft is taking off from, or landing on, 
available runway at airports, subject to operational constraints. 
To handle the landing and taking-off of an aircraft, is a very 
challenging process. It is highly related to safety, efficiency, 
robustness, and competitiveness issues. The common practice 
is to tackle the task using first come first serve (FCFS) basis. 
This method may not be efficient but it is certainly the 
simplest way to manage the operation.  

However, with rapid development in computing, 
researchers have been developing multiple ways to aid the 
process of scheduling and sequencing aircrafts. This include 
the adaptation of computational intelligence. In this paper, we 
focus on the application of computational intelligence in 
solving the problem of sequencing and scheduling landing 
aircrafts, which is commonly known as aircraft landing 
problem (ALP).  

The remainder of this paper is organized as follows. Basic 
concept of aircraft landing problem is briefly explained in 
section II. Section III describes the computational techniques 
used in order to optimize ALP. Section IV concludes this 
work. 

2. Aircraft Landing Problem 

ALP can be defined as a process of sequencing and 
scheduling the arriving aircrafts. Nowadays with airports 
operating with more than one runways, ALP can be viewed as 
two objectives problem, which are sequencing the optimal 
landing order of the arriving flights and scheduling a runway 
for each arriving aircraft [3]. In [1], the objectives are listed as; 
a) maximizing runway throughput, b) minimizing the 
approach time of aircraft before landing, c) minimizing the 
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arrival delay, d) minimizing air traffic controller’s workload. 
Thus, one of the challenges for the researchers in this field is 
to develop a solution capable of dealing with a variety of 
objectives. This raise the issue of which objective function to 
adopt. By far ALP’s objective function causes the most 
discussion among researchers. Arguments can convincingly be 
made for many different objective functions. Different users 
will, for perfectly legitimate reasons, use different objective 
functions [4]. 

ALP is a dynamic problem as the controller need to operate 
in real-time. The controller must generate an updated schedule 
for the set of arriving aircraft to be sequenced and scheduled 
both periodically and in response to aperiodic events, while 
the length of the periodic cycle is related to the basic radar 
update time interval, which is 4–12 seconds long [5].  

In most studies, the common structure of ALP (static case) 
has n number of landing aircrafts, which the aircrafts denoted 
as i = 1, 2, …, n, and the estimated earliest landing time is E, 
and the latest landing time is L. Therefore, the time window 
for an aircraft can is bounded within [E(i),L(i)]. Controller 
will assign a target landing time for every landing aircraft, T, 
and it must be in between E and L, hence, E(i) ≤ T(i) ≤ L(i). 
The controller must also obey the minimum separation time 
constraint between leading aircraft and trailing aircraft. This is 
a mandatory safety measure to avoid complications like the 
wake turbulence and aircraft collision. 

2.1 Problem modelling 
Psaraftis [6] models ALP into a simple version. He sums up 

the landing times of the arriving aircraft as cost/delay, which 
is described as Total Passenger Delay (TPD) while the 
throughput is measured based on the landing time of the last 
aircraft in the sequence, described as Last Landing Time 
(LLT). The objective is to minimize both TPD and LLT. 
Psaraftis also stated that aircraft sequencing problem is the 
same, as the NP-hard Travelling Salesman Problem (TSP), 
where, the cost of the graph represents the landing cost and 
the route represents the aircraft landing sequence. However, 
Psaraftis did not consider the aircraft latest landing, L, which 
allows the aircraft to land at any given time. 

On the other hand, Bayen et al. [7] focuses on formulating 
holding time using two approaches. The scheduling process is 
optimized when the holding time is minimized and, therefore, 
minimize the sum of arrival time. They formulated ALP as a 
single machine job scheduling problem. However, they 
consider that all arriving flights in one large class. Thus, the 
required separation between landings is independent of the 
aircraft type. 

Cheng et al. [8] emphasis on runway assignment for ALP. 
They discuss sequencing and scheduling a number of arrivals 
to a number of runways. The paper focuses on static case of 
ALP. The data set used contains the estimated time of arrivals 
(ETA). The aircraft performances and the flight pattern are also 
taken into consideration. The main objective is to minimize the 
delay, which is the difference between the scheduled time of 
arrival (STA) and the earliest ETA in all the runways for an 
aircraft. Hansen [9] improves the implementation made by 
Cheng with an experiment on larger set of aircrafts made up to 

the possible realistic level. The same formulation is also 
adopted in various work [10],[11] ,[12] ,[13]. 

Another study regarding to the static case of ALP was 
carried by Krishnamoorthy et al. [14] and then improved by 
Beasley et al. [4]. The study comprises both single-runway 
and multiple-runway cases. The objective is to minimize the 
total cost, where the cost is linearly related to deviation from 
target landing time for landing planes. Figure 1 shows how the 
cost of aircraft landing is introduced in the paper. Although 
the cost function shown is nonlinear, it can be linearized by 
decomposing the two linear portions and formulate the 
problem with a linear objective function. The paper includes 
various mathematical constraints to manifest every possible 
condition of ALP. This study has been cited by many ALP 
researchers as it presented a general description of the model, 
goals, and mathematical formulation of the landing planning 
for one or more runways [15], [16], [17], [18],[19],[20]. 

 
Figure 1. Cost variation in time window during flight 

3. Computational Intelligence on ALP 

This section reviews the literature related to ALP. The 
subsections are organized according to the computational 
intelligence method used. 

3.1 Evolutionary algorithms 
Genetic algorithm (GA) is a famous evolutionary algorithm. 

It has been used in various problems including ALP. In 
previous work of Cheng et al. [8] the runway assignment is 
carried using genetic search algorithm. Four schemes of 
genetic search were used to solve a simple scenario involving 
12 flights in 3 runways. The result shows application of 
genetic search gives an impressive result. The method is later 
improved by Hansen [9] with a larger data set, which is nearer 
to the realistic case. Hansen proposed the improved version of 
genetic algorithm called Genetic Programming (GP). GP 
shows a better performance than GA when dealing with larger 
set of arriving aircrafts. Liu [11] compared GA with newly 
developed Genetic Local Search (GLS), which is an extension 
of GA in solving ALP. Liu uses Hansen’s case as well to 
experiment with GLS and it is proven to be more efficient in 
term of both optimality and time cost than GA. 

Wang et al [3] adopted GA to solve ALP on parallel 
runways, which include independent approach and relevant 
approach. It is tested on 40 arriving flights.  

Abela et al. [14] discussed two different solution for ALP 
which are using GA and branch-and-bound. Both approaches 
are tested with a data set and GA is proven to be effective in 
small problem. Hu and Di Paolo [13] have integrated GA with 
receding horizon (RH) strategy to tackle ALP. The 
chromosomes in GA are constructed using the arriving order 
and/or arriving time of each aircraft.   
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Pinol and Beasley [15] introduce a hybrid method using 
another evolutionary algorithms, scatter search and bionomic 
algorithm for ALP. Both methods are combined and used for 
problem instances up to 500 aircrafts and 5 runways. In linear 
ALP cases, scatter search performs better than bionomic 
algorithm while in non-linear cases, bionomic algorithm 
performs better than scatter search. These methods, are 
flexible to be adapted and able to change objective between 
linear and non-linear ALP cases. 

3.2 Swarm Intelligences 
Other than evolutionary algorithms, swarm intelligence 

algorithms are also used in solving ALP. Among the Swarm 
intelligence algorithms used are particle swarm optimization 
(PSO), ant colony optimization (ACO) and gravitational 
search algorithm (GSA). 

A PSO hybridized with local search (LS) on rolling horizon 
(RH) is proposed by Girish [21] to minimize the deviation 
cost of aircraft landings by using Beasley’s formulations [4]. 
It is then compared with another two PSO variants. The RH 
framework with hybrid PSO-LS is proven to be more efficient 
and has shorter computational time.  

Benceikh [19] uses ACO to solve ALP and the Beasley’s 
formulation is improved by incorporating dynamic cases, for 
example, flight cancellation and runway closing. They also 
improved ACO with more robust heuristic named Improved 
ACO (IACO) to reduce the penalty cost. 

Kazem et al [10] introduce GSA in their paper for the 
purpose of solving ALP. GSA is a swarm intelligence 
algorithm which was inspired by Newton’s law of gravity [22]. 
Firstly, random sequence of aircrafts with their allocated 
runway are generated as initial solutions and each solution’s 
fitness is computed. Using the Newton’s law of gravity, each 
solution is improved on the next iteration. The study uses 
Hansen’s data set and compared with genetic search algorithm, 
GA, scatter search and bionomic algorithm, and GSA is found 
to provide better solution in shorter amount of time. 

3.3 Other techniques  
Dear [23] describes ALP as a dynamic problem and 

introduced the constrained position shifting (CPS) method. 
CPS works as the sequencing mechanism where the order of 
landing aircraft is only shifted by limited k positions from its 
FCFS position. Psaraftis [6] further improved Dear’s study 
using backward dynamic programming algorithms that use the 
number of aircraft from each classes that has not yet been 
scheduled to land and the class of the last aircraft to land as 
the state variables. His method is also adaptable using CPS 
without increasing the time complexity. However, Psaraftis 
method assumes there is no landing restriction which means, 
the aircraft can land at any time. Balakrishnan et al [24] 
develop the work of Psaraftis’s CPS by simultaneously 
handling precedence constraints, landing restriction and CPS 
operational constraints, which reduces the computational time 
and make it easy to be adopted in real-time for both static and 
dynamic cases. The updated work on CPS by Rodriguez-Diaz 
et al [25] show how CPS is adapted on single mixed-mode 
runway operation.  They use simulated annealing (SA) to 

experiment with CPS on a very large data set. The data 
considered is up to 200 flights and 2000 instances. The study 
emphasizes on how the focus of research should include 
mixed-mode operation in their problem modelling. 

Beasley et al. [4] on the other hand approach the problem 
from a different perspective using mixed-integer zero-one 
formulation which is adopted using a basic tree search 
strengthen with linear programing (LP) relaxation. A scenario 
of 50 aircraft and four runways is tested and the result showed 
the LP-based tree search are able to work with various 
constraints that commonly encountered in practice. However, 
since the problem is NP-hard, it is likely for the computation 
time to grow exponentially with the number of flights. 

Bayen et al. [7] use dynamic programing (DP) and linear 
programming relaxation (LP) with rounding approach. DP 
approaches have the performance ratio of 5 for the sum of 
arrival times of all aircraft and LP relaxation with rounding 
has the performance ratio of 3 for the landing time of the last 
aircraft.   

Lieder et al. [26] introduce DP in solving ALP with 
different aircraft classes on multiple runways with positive 
target landing times and limited time windows. A new 
dominance criterion is developed order to improve the 
performance of DP approach. The criterion based on the 
formulation by Briskorn et al [27]. 

Table 1 comprises all the techniques discussed on this 
section. The techniques are tabulated according to the 
methodology, the formulation and the instances used in their 
respective studies.  

4. Conclusions 

This paper provides an overview on how computational 
intelligence is used in ALP. From the review, it can be seen 
that computational intelligence techniques are popular in 
solving ALP. The problem modelling of ALP is also observed 
not to be uniform across the literature. For example, in some 
literatures, ALP is viewed as static case while other view it as 
dynamic case. For our future work, we will investigate on how 
to solve ALP using computational intelligence approach that 
are more robust and dynamic similar to the real problems 
faced by air traffic controllers. 
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Table 1. Overview of related literatures 
Source  Methodology Type of 

case 
Objective Problem 

instances 
Dear (1978) Constrained 

Position 
Shifting 

Static/d
ynamic 

Max throughput 
Min Σ total 
delay 

Random 
generated 
instances 

Psaraftis 
(1978) 

Constrained 
Position 
Shifting 

Static Min Σ costs/min 
makespan 

Random 
generated 
instances 

Balakrishnan 
et al. (2006) 

Constrained 
Position 
Shifting 

Static Min Σ costs/min 
makespan 

Denver airport 
real data 

Rodriguez-
Diaz (2017) 

Constrained 
Position 
Shifting 

Static Min Σ delay Random 
generated 
instances, 
Beasley 
(2000) and 
Gatwick 
airport 

Beasley et al 
(2000) 

Linear 
programming  

Static Min Σ penalty 
cost 

Beasley 
(1990) 

Bayen 
(2004) 

Linear 
programming 
and dynamic 
programming 

Static Min Σ arrival 
time 
Min last aircraft 
landing time 

No instances 
(theoretical 
analysis) 

Cheng et al 
(1999) 

Genetic 
algorithm 

Static Min Σ delay Sampling data 

Hansen 
(2004) 

Genetic 
Algorithm, 
Genetic 
programming 

Static Min Σ delay Cheng et al 
(1999) 

Wang (2014) Genetic 
Algorithm 

Static Min Σ delay Sampling data 

Liu (2011) Genetic local 
search 

Static Min Σ penalty 
cost 

Beasley 
(2000) 

Abela et al 
(1993) 

Genetic 
algorithm, 
Branch and 
bound 

Static Min Σ deviation 
cost 

Randomly 
generated test 
data 

Hu and Di 
Paolo (2009) 

Genetic 
algorithm 

Static Min Σ delay 
Max arrival 
queues 

Hansen 
(2004) 

Pinol and 
Beasley 
(2006) 

Scatter search 
and Bionomic 
algorithm 

Static Min Σ penalty 
cost 

Beasley 
(2000) 

Girish 
(2016) 

Particle 
swarm 
optimization 
with local 
search 

Static Min Σ penalty 
cost 

Beasley 
(2000) 

Benceikh et 
al (2011) 

Ant Colony 
Optimization 

Dynam
ic 

Min Σ penalty 
cost and 
displacement 
function 

Beasley 
(2000) 

Kazem et al 
(2016) 

Gravitational 
search 
algorithm 

Static Min Σ total 
delay 

Hansen 
(2004) 
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