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Abstract 

The aim of this study is to improve classification performance of neural networks as an EEG-based BCI for mobile 
robot control by means of hyperparameter optimization in training the neural networks. The hyperparameters were 
intuitively decided in our preceding study. It is expected that the classification performance will improve if you 
determine the hyperparameters in a more appropriate way. Therefore, the authors have applied Bayesian optimization 
to training the EEG-based BCI neural networks and achieved the performance improvement. 
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1. Introduction 

Brain Computer Interface (BCI) is a promising 
technology that provides means of direct communication 
through your brain. Since brain activities bring about 
perception, recognition, and sensory-motor functions in 
human beings, BCI based on a state of your brain has 
potential to be applicable to support many kinds of 
human activities. A lot of studies on BCI have used non-
invasive brain activity measurement methods, especially 
Electroencephalography (EEG) because of its superior 
time resolution and ease of use. Furthermore, portable 
and low-cost EEG measurement devices have become 
readily accessible lately. 

EEG-based BCI have already applied for assisting 
handicapped people and augmenting human capability1,2. 
R. Single et al. developed a SSVEP-based BCI for 
controlling a wheelchair using multi-class SVM3,4. J. 
Meng et al. experimentally investigated a noninvasive 
BCI for reach and grasp task of robotic arm5. In these 

studies, the subjects did not directly imagine desired 
behavior of a controlled object. 

As an EEG-based BCI for mobile robot control, the 
authors are developing a neural network (NN) for EEG 
signal classification. In our earlier studies6–8, we 
instructed a subject to imagine an arrow representing a 
desired behavior of a controlled object with closed eyes 
for removing visual stimuli unrelated to experiments. In 
addition to the experiments with the subjects closed their 
eyes, we conducted an experiment to confirm open eyes 
influence on constructing an EEG-based BCI NN9. 
Considering practical use of BCI, actually imagining a 
desired motion of a controlled object with open eyes 
would be a more appropriate way for controlling a mobile 
robot. However, none of the constructed NNs achieved 
practical performance. 

The authors conjectured that one of the reasons for 
the insufficient results was due to hyperparameter 
settings in training the NNs. The hyperparameters were 
intuitively set in the preceding studies. It is expected that 
the classification performance will improve if you 
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determine the hyperparameters in a more appropriate 
way. Therefore, the study described in this paper aims at 
improving the performance of the EEG-based BCI NNs 
for mobile robot control by hyperparameter optimization. 
For optimization, the authors adopted Bayesian approach 
that optimizes hyperparameters for NN training by 
determining the hyperparameters to be next verified on 
the basis of results already checked. In consequence, the 
method can find the optimal hyperparameters efficiently. 

In this paper, the authors present experiments 
introducing Bayesian optimization using the EEG signals 
recorded in our previous study. The experimental results 
demonstrated that Bayesian optimization of 
hyperparameters improved the classification rate of the 
EEG-based BCI NNs for mobile robot control. 

2. EEG Signal Classification Using Stacked 
Autoencoder 

This section describes the structure of the multilayered 
NNs used in the preceding study9. Stacked Autoencoder 
(SAE) was employed as an EEG-based BCI NN for 
mobile robot control in the study. SAE is a multilayered 
NN initialized by stacking encoder layers of pretrained 
Autoencoder (AE), which is a three layered NN shown in 
Fig. 1. 
 

 
Fig. 1.  Autoencoder (AE) 

 
A typical AE has equal-sized input and output layers, 

and a less-sized hidden layer. The whole of AE is trained 
in order that it can yield an output signal equal to an input 
one. Since the hidden layer has less nodes than the input 
layer, significant information is extracted from the input 
signal through the encoder part, which is between the 
input and hidden layers, for restoring the signal through 
the hidden and output layers; namely AE is a NN for 

dimensionality reduction. G. E. Hinton and R. R. 
Salakhutdinov revealed that AE surpasses Principal 
Component Analysis (PCA) for dimensionality 
reduction10. 

SAE is a way to construct a multilayered NN 
avoiding vanishing gradient in backpropagation. As 
stated above, an initial multilayered NN is prepared by 
stacking encoders of pretrained AEs in cascade, and the 
whole NN is trained again using the same input signals 
and target ones. The last training is called finetuning. 

3. Bayesian Optimization of Hyperparameters 

Ahead of training a NN, you must determine some 
parameters, such as number of layers, number of nodes, 
learning rate, and so on, which are called hyperparameter. 
The preceding study has not achieved practical 
performance of the SAEs for EEG-based BCI probably 
because the hyperparameters were intuitively determined. 
Optimization of hyperparameters is an essential process 
to improve performance of NNs. 

One of the methods for hyperparameter optimization 
is grid search, in which combinations of hyperparameters 
are uniformly arranged in the form of a grid in a 
hyperparameter space, all of the parameter combinations 
are verified. Therefore, the optimal hyperparameters are 
found with a high probability if the grid arrangement in 
the hyperparameter space is sufficiently dense. In the 
case of high dimensional hyperparameter space, however, 
it becomes difficult to conduct verification in the dense 
grid within a realistic time due to huge number of 
hyperparameter combinations. In addition, if some of the 
hyperparameters have little influence on the performance 
of the NN, calculation time for grid search is wasted on 
searching in worthless regions of the hyperparameter 
space. 

J. Bergstra and Y. Bengio have shown empirically 
and theoretically that random search can find optimal 
hyperparameters more efficiently than grid search11. 
Furthermore, J. Snoek et al. have demonstrated that 
Bayesian optimization for hyperparameter selection of 
machine learning algorithms found optimal 
hyperparameters faster, and outperformed 
hyperparameter selection by a human expert12. The 
Bayesian approach determines the hyperparameters to be 
next examined on the basis of results already verified. 

First, Bayesian optimization randomly selects 
hyperparameters and verifies them. Following that, a 
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region where the optimal hyperparameters are likely to 
exist are estimated from the previous results and 
preferentially verified hyperparameter in the region. The 
estimation of the region to be examined is made by 
maximizing an acquisition function that includes 
probability and expected values under the assumption 
that a function to be optimized follows Gaussian process. 
In this research, the authors attempted to optimize the 
hyperparameter of the SAEs for EEG-based BCI for 
mobile robot control using GPyOpt13, which is a Python 
library for Bayesian optimization. 

4. Results and Discussion 

The authors empirically confirmed effects of Bayesian 
optimization for tuning hyperparameters on improving 
the classification performance of the SAEs for EEG-
based BCI mobile robot control using the EEG signal 
dataset obtained in the preceding study. Fig. 2 is a 
schematic diagram of the apparatus for EEG 
measurement experiments conducted in the preceding 
study9. In the EEG measurement experiments, two 
different imagining tasks, named "CLOSED-EYES" and 
"OPEN-EYES", were given to three subjects as follows. 
 
 CLOSED-EYES: close your eyes and imagine a 

specified arrow 
 OPEN-EYES: watching the mobile robot moving to 

a certain direction, imagine the robot's motion 
 
Refer to Ref. 9 for the other experimental conditions of 
the EEG measurement, such as experimental procedure, 
information of the subjects, and so on. 
 

 
Fig. 2.  Experimental apparatus 

 
Chainer14 (ver. 1.18.0) for implementing the SAEs 

and GPyOpt13 (ver. 1.2.0) for Bayesian Optimization 
were used in the confirmation experiments. Table 1 
shows the computation environment for development 
and execution of the SAEs. Table 2 describes the 
hyperparameters optimized in the experiments and their 

options; the settings enclosed in parentheses are the 
options chosen in the preceding study9. GPyOpt 
optimized the hyperparameters so that false recognition 
rate is minimized. The false recognition rate of each SAE 
was calculated using 5-fold cross validation. 

Table 1.  Specifications of computation environment for 
development and execution of stacked autoencoders 

CPU Intel® CoreTM i7-6800K CPU @ 3.40GHz 
Memory 16GB (DDR4-2133 4GBx4) 
Storage SSD 240GB + HDD 1TB 
GPU NVIDIA GeForce GTX1060 6GB GDDR5 
OS Ubuntu 16.04 LTS 

Table 2.  Hyperparameters and options 

Hyperparameter Options (setting value in Ref. 9) 
Number of hidden 
layers 1 ~ 3 (3) 
Number of nodes in 1st 
hidden layer 250 or 300 (250) 
Number of nodes in 2nd 
hidden layer 150 or 200 (150) 
Number of nodes in 3rd 
hidden layer 50 or 100 (100) 
Iteration of pretraining 
each AE (epoch) 1000 or 2000 (1000) 
Iteration of finetuning 
(epoch) 5000 or 10000 (10000) 
Dropout 50% in 
pretraining AEs OFF or ON (ON) 
Dropout 50% in 
finetuning OFF or ON (ON) 

 
Table 3 and Table 4 show the results obtained in the 

preceding study9. Table 5 and Table 6 report the 
classification rate percentages of the SAEs calculated in 
this study with Bayesian optimization. Compared the 
updated results with the previous ones, it is indicated that 
we could improve the performance of the SAEs trained 
with the hyperparameters optimized by Bayesian 
approach. However, the options of the hyperparameters 
given to the optimization algorithm were very restricted. 
Therefore, we would consider further improvement to be 
possible by revising the hyperparameter options more 
carefully. 

5. Conclusion 

This paper presented the performance improvement of 
the EEG-based BCI neural networks for mobile robot 
control proposed in the preceding study. The authors 
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introduced Bayesian optimization in order to find the 
better hyperparameters for training the neural networks 
and then experimentally confirmed the expected effect of 
the method. The authors will design the appropriate 
options of hyperparameters that considerably ameliorate 
the classification performance of the EEG-based BCI 
neural networks for mobile robot control. 

Table 3.  Classification rate percentages of SAEs trained using 
120 samples recorded in CLOSED_EYES without Bayesian 
optimization9 

Subject 1st 
day 

2nd 
day 

3rd 
day 

4th 
day 

5th 
day Ave. 

A 50.00 54.17 58.33 73.33 85.83 64.33 

B 47.50 60.83 61.67 55.83 48.33 54.83 

C 31.67 40.00 45.00 66.67 31.67 43.00 

Table 4.  Classification rate percentages of SAEs trained using 
120 samples recorded in OPEN_EYES without Bayesian 
optimization9 

Subject 1st 
day 

2nd 
day 

3rd 
day 

4th 
day 

5th 
day Ave. 

A 95.00 45.00 52.50 31.67 67.50 58.33 

B 60.00 49.17 53.33 25.83 43.33 46.33 

C 54.17 30.00 38.33 59.17 25.00 41.33 

Table 5.  Classification rate percentages of SAEs trained using 
120 samples recorded in CLOSED_EYES with Bayesian 
optimization 

Subject 1st 
day 

2nd 
day 

3rd 
day 

4th 
day 

5th 
day Ave. 

A 55.00 57.50 66.67 79.17 92.50 70.17 

B 50.00 70.00 53.33 66.67 54.17 58.83 

C 44.17 49.17 51.77 76.67 33.33 51.02 

Table 6.  Classification rate percentages of SAEs trained using 
120 samples recorded in OPEN_EYES with Bayesian 
optimization 

Subject 1st 
day 

2nd 
day 

3rd 
day 

4th 
day 

5th 
day Ave. 

A 95.83 48.33 45.83 41.67 75.00 61.33 

B 66.67 57.50 60.83 33.33 43.33 52.33 

C 60.00 40.00 49.17 76.67 38.33 52.83 
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