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Abstract 

For autonomous underwater vehicle (AUV), high autonomy is required in order to accomplish mission such 
as inspection, observation, manipulation under extreme environments, deep-ocean. One of necessary 
function for AUV is the self-diagnosis system to detect the abnormality can be said to be an important feature. 
In this paper, we propose a self-diagnostic system using the dynamical model of Sampling-AUV “TUNA-
SAND2”, where the fault device detection is carried out using the model, and evaluated through tank tests. 
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1. Introduction 

Underwater robots have attracted attention as useful 
tools1-6 to observe deep-sea floor. Especially, 
Autonomous Underwater Vehicle (AUV) can move wide 
area freely not having tethered cable with support vessel. 
On the other hand, for AUV,  high autonomy is required 
in order to accomplish mission such as inspection, 
observation, manipulation under extreme environments, 
deep-ocean. One of necessary function for AUV is the 

self-diagnosis system to detect the abnormality can be 
said to be an important feature. 

As a previous study, Takai7 et al. proposed a self-
diagnosis system utilizing a dynamic model by a neural 
network (NN) However, NN cannot prove the stability of 
the model theoretically.  
In this paper, we propose a self-diagnostic system using 
the dynamical model of Sampling-AUV “TUNA-
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SAND28”, where the fault device detection is carried out 

using the model, and evaluated through tank tests. 
 
Fig.1 Newly Developed AUV “TUNA-SAND 2” 

 

 
 

Fig. 2 Thruster Arrangement in Horizontal Plane. 

2. Dynamic Model of AUV 

Depending on the mission objectives, AUV has 
mounted different sensors and thrusters, so the 
mathematical model also changes. Therefore, a hovering 
type AUV “TUNA-SAND2” jointly developed by the 
University of Tokyo and Kyushu Institute of Technology 
was set as target robot. We assume two abnormalities to 
be detected are (1) tidal disturbance and (2) low thruster 
output.  

TUNA-SAND 2 has six thrusters, as shown in Fig. 2, 
it has a redundant drive system using four thrusters for 
the horizontal movement of the three DOF of Surge, 
Sway and Yaw. In order to develop an algorithm to solve 
this redundancy, AUV models the horizontal plane 
movement in diagnosing the failure of the thruster. 

Based on the above condition setting, we define the 
equation of motion of AUV9 in eq. (1) and the current 
consumption of AUV in eq.(2). 

  = −1{− ( −1 − )| −1 − | + (  − ) −1} (1) 
 

 = 0 +  ∑(1 − ) −1   (2) 
 

 Here,  = [  y Z ]  means the velocity vector of 
AUV,   = [ 1  2  3  4 ]  is  the thruster control signal 
vector,  ∈ R3×3 is the mass and inertia moment 
including additional mass,  ∈ R3×1 is the hydraulic 
coefficient,  ∈ R3×4 is the inverse kinematics transfer 
thruster output to the force to the center of gravity of 
AUV. Regarding eq. (2),  is the total consumption 
current of AUV,  0 is the steady consumption current of 
CPU and others excluding thrusters, e τ is the conversion 
coefficient from command thrust to thruster consumption 
current. Also, μ = [μ x μ  0] , γ =  {γ 1, γ 2, γ 3, γ 4} 
are the ambient power flow rate to be diagnosed, the 
power reduction rate of each thruster (0 to 100 [%]) . 
 State vector , observation vector , manipulation 
vector , abnormal variable β to be diagnosed as in 
equations (3) - (6). 

=  ̇   ̇   ̇           (3) 
=            (4) =  [       ]     (5) 

=                  (6) 
 

, the translational speed, angular velocity, current 
consumption, can be observed from the velocity sensor, 
the inertial navigation device and the current sensor. 
Using eqs. (1) to (6), the state equation motion is in (7) 
and observation equation is in (8) . 
 

 = ( −1, −1, )      (7)  
 =  = [ 4×3  ] ∙      (8)  

3. Self-Diagnosis System 

The basic concept of self-diagnosis system is shown 
in Fig. 2. Based on the time series data of the manipulated 
variable  and observation variable y  of AUV, the 
observer to estimate βis constructed. 
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Fig. 3 The concept of self-diagnosis system 

 
First, the diagnostic data is the time series of data in 

time [ ,  - ]. The initial state in the diagnosis at time t is 
-  and the manipulated variable are - ,…, -1. By 

substituting these into the eqs. (7) and (8), the 
observations ( )  to ( ) are estimated. Here, 
the estimation error RSS( ) is calculated in eq. (9). 

 ( ) = ∑ ∑ ( ( ) − ( ))  (9)  
 

Here, M is the dimension number of the observation 
vector, ε is the weighting parameter, and  (β) shows 
the error between the proposed model and the measured 
value. By finding the optimal solution β that minimizes 
this function  (β), the model estimates the current 
defaults. The steepest descent method was used for 
searching for the optimal solution β (see Fig.4).  

Fig.4 Parameter search by changing . 

4. Evaluation of Proposed System 

4.1. Simulation 

The simulations are carried out supposing that 
defaults and disturbances happen during the cursing at 
0.2 m/s in forward direction as shown in Table 1. 

 

Table 1 Simulation Condition for Observer 
Evaluation 

ID Time[s] Condition Parameters 
- 0 - 5 Normal - 
1 10 - 25 Thruster 1 stop  = 1 
- 25 - 50 Normal - 
2 50 - 75 Thruster 1&3 50% down ,  = 0.5 
3 75 - 100 All thruster 50% down = 0.5 
4 100-125 Current x=0.2  

 

a 1   (b) 2 

c 3   (d) 4 

(e x   (f) y 
Fig.5 Performance Evaluation by Simulations. 

 
We evaluated the diagnostic performance by 

simulation as shown in Fig.5, assuming the case where 

① ② ③ ④ ① ② ③ ④

① ② ③ ④ ① ② ③ ④

① ② ③ ④① ② ③ ④ ① ② ③ ④
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four kinds of defaults occurred. The solid line means the 
estimated defaults and dot line true value. In the 
simulations, the observer can estimate the defaults and 
disturbances. 

4.2. Experiments 

We had evaluation experiments using AUV TUNA-
SAND2, where the AUV is cruising at 0.2 m/s in surge 
direction and all thrusters outputs become half after 10 
seconds passed. The evaluation results are shown in Fig.6. 
The estimation of reduction percentage is over-estimated 
than commanded values, thrusters’ defaults are detected. 

5. Conclusions 

In this research, we proposed a model based faults 
detection system for diagnosis of AUV. The system is 
evaluated by simulations and experiments using AUV 
TUNA-SAND2, and the results show good performance 
and detect the faults. 
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Fig. 6 Evaluation Using TUNA-SAND2. 
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