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Abstract 

This paper investigates the stability control for a 2 DOF magnetic levitation system with uncertain parameters and 

external disturbance. The electromagnetic forces between the magnets and coils are obtained by numerical calculation. 

Then, an adaptive sliding mode controller is proposed to deal with the parameter uncertainties in the system matrices. 

The robust stability of the closed-loop system is proved by Lyapunov stability theory. Simulation results are presented 

to verify the effectiveness of the proposed control strategy. 
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1. Introduction 

In recent years, magnetic levitation technology 

becomes more and more important in the modern 

industry, like high precision transportation, because 

magnetic levitation technology can eliminate the friction, 

vibrations and wear caused by contact. And these 

machines have to move in multiple degrees of freed-

om(DOF). In Ref. 1-2, two kinds of planar motors using 

Halbach permanent magnet arrays which can move in a 

large horizontal plane have been proposed. Ref. 3 design-

ed a long stroke 6 DOFs direct drive machine, the mover 

was constructed by symmetric linear magnet arrays and 

control currents generated by manufactured PCBs.  

However, large rotation ranges are limited by the 

distribution of magnetic field in the above mentioned 

technologies, forces and torques in six DOFs can not be 

calculated sufficiently accurately in real time.4 To this 

end, Ref. 5 proposed a novel single-deck planar maglev 

stage, its electromagnetic forces and torques are analyzed 

by the ANSOFT software. Refs. 6 also used numerical 

calculation method to obtain accurate electromagnetic 

forces and torques, and large rotation ranges have been 

realized.  

Inspired by those works, this paper mainly focus on 

the problem of stability control for a 2-DOF magnetic 

levitation system subjects to parameter uncertainties. The 

contributions include that 

(i) In the modeling process of electromagnetic forces, 

the errors between the real position and preset one are 

described as the uncertainties of control matrix. 

(ii) Based on the sliding mode method, an adaptive 

controller is designed to guarantee the robust stability 

of the closed-loop system which has uncertain 

parameters and external disturbances. 
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This paper is organized in six sections. Section 2 

describes electromagnetic forces numerical calculation 

model; Section 3 analyses the uncertain parameters of 

system dynamic model; Section 4 presents the controller 

design. Simulation results are presented in section 5. And 

the conclusions are given in section 6. 

2. Electromagnetic Force Model 

In this paper, we investigate a 2 DOFs magnetic 

levitation system that consists of one disk magnet and 

two cylindrical coils shown in Fig.1, Assumed that the 

levitated magnet can only move through x-axis and z-axis 

but can not rotate. 

Generally, electromagnetic forces are calculated by 

Lorentz's formula at a fixed relative position between the 

magnet and coils. The total forces are calculated as the 

volume integrals: 

 
m m

I
F J B dV a B dV

A
= ｴ = ｴ  (1) 

where J  is the vector of the current density of coils, I  

is the coil current, A  is the cross-sectional area of the 

coil, a  is the direction of the current, mB  is the vector of 

magnetic field density generated by the magnet and it is 

the function of the relative position of the magnet and the 

coils, V is the volume of coils. From Eq. (1) we can get 

that the electromagnetic forces are proportional to the 

magnitude of coil currents at a fixed relative position. So 

we can write Eq. (1) as follow: 

 ˆF bI=  (2) 

where 
1ˆ

mb a B dV
A

  . 

In practice , the impact between coils can be ignored, 

so the forces generated by each coil are independent, the 

total forces can be calculated simply by adding the forces 

generated by each coil. The forces can be written as : 

 ˆ ˆ 1,2ii
F b I BI i    (3)  

where 1 2[ , ]TI I I , 1 2
ˆ ˆˆ [ , ]TB b b .  

Because the forces generated by each coil current are 

proportional and independent, a numerical model can be 

established that only includes one magnet and one coil, 

the electromagnetic forces are calculated in this model on 

each preset position along x-axis and z-axis with a unit 

ampere of current to get ˆ
ib , then use Eq. (3) to get F . 

But the preset positions in numerical calculation 

model are discrete, when the magnet moves on the 

positions that have not been numerical calculated, we can 

not find the matrix B̂ . In Ref. 6, B. Peter uses nearest-

neighbor positions to replace real positions, so the B̂ is 

not certain at some positions, in this paper, the uncert-

ainties of B̂ are introduced as B̂D , obviously, it is 

bounded, so the electromagnetic forces can be written as: 

 ˆ ˆ( )OF B B I= + D  (4) 

where ˆ
oB is the nominal part of B̂ . 

3. Model Analysis 

The dynamic model of the magnetic levitation system 

can be derived by using Newton’s Law as follow: 

 
1,2

x xi

z zi

F f mx

F f mz mg i

 

   




 (5) 

where m is the mass of magnet, g is acceleration of 

gravity. Choose 1 2 3 4[ , , , ] [ , , , ]X x x x x x x z z  , apply Eq. 

(4) to Eq. (5), the dynamic model can be expressed as 

follow: 

 ( ) ( )X f X B B I     (6) 

where 2 4( ) [ ,0, , ]Tf X x x g  , 1 2[ , ]TI I I , ˆ /B B m   , 

11 21 11 21

12 2212 22

ˆ ˆ0 0 0 0
/

ˆ ˆ 0 00 0

T T
b b b b

B m
b bb b

   
    
    

. 

Simultaneously consider the uncertain parameters of 

system dynamic model and external disturbances, write 

dynamical model as follow: 

( ) ( ) ( )o OX f X f X B B I w= + D + + D +&  (7) 

 

Fig. 1.  Magnetic levitation system 
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where ( )of X  is the nominal part of ( )f X , ( )f XD is the 

uncertain part of ( )f X , w is external disturbance, 

assumed that both of them are bounded. 

4. Adaptive Sliding Mode Controller Design 

Define the desired state as 1 2 3 4[ , , , ]T

d d d d dX x x x x ， 

the tracking error can be written as:  

 
1 2,

T
T T

dE e e X X鴿= = -・・  (8) 

where 1 [ (1), (2)]Te E E , 2 [ (3), (4)]Te E E . 

Because the levitated magnet moves along two axes, 

the sliding-surface function can be introduced as: 

 
1 2 1 1 2 2[ , ] ,

T
T T Ts s s c e c e鴿= = ・・  (9) 

where 1 11 12[ , ]Tc c c , 2 21 22[ , ]Tc c c . The constant 11c , 12c ,

21c , 21c are chosen to be positive to make sure that the 

polynomial 11 12c c  and 11 12c c  is Hurwitz. 

Differentiating s yields: 

 ( ) ( , )T T T

d os c f X c X c B I W X I= - + +&&  (10) 

where
1

2

0

0

c
c

c

鴿
・=
・
・

, ( , )W X I is the lumped uncertain 

parameters and external disturbance: 

 1 2( , ) , ( )
T T T TW X I W W c f X c BI c w       (11) 

in practice, the input coil currents are bounded, we can 

guarantee that ( , )W X I is bounded. 

we design the control input I  to be: 

 o sI I I   (12) 

where  

1( ) ( ( ) )T T T

o o dI c B c f X c X    (13) 

1 11 1

2 2

ˆ sgn( )
ˆ( ) sgn( ) ( )

ˆ sgn( )

T T

s o o

P s
I c B P s c B

P s

 
 

     
  

 (14) 

and 1P̂  and 2P̂ are adjustable parameters, and the adaptive 

law is: 

 
1 2

1 2

1 1ˆ ,

T

P s s
 

 
  
 

 (15) 

where 1r and 2r are the adaptation gain and both are 

positive. Assume that 1dP and 2dP are the terminal solution 

of 1P̂  and 2P̂  which satisfy 1 1,dW P｣ 2 2dW P｣  

respectively. 

Choose the adaption error as: 

 
1 1 1

22 2

ˆ
.

ˆ

d

d

P P P
P

PP P

   
    

    

 (16) 

Define a Lyapunov candidate function as: 

 
1

2

01 1
.

02 2

T TV s s P P




 
   

 
 (17) 

The time derivative of the Lyapunov candidate 

function can be found to be: 

1

2

1 1 1

2 2 2

1 11 1 1 1

2 22 22 2

1 1 2 2 1

0

0

ˆ( )
  ( ( ) ( , ))

ˆ( )

ˆˆ sgn( ) sgn( )
   = ( ( , ) )

ˆˆ sgn( )sgn( )

   =

T T

T

dT T T T

d o

d

T

dT

d

V s s P P

P P
s c f X c X c B I W X I P

P P

P PP s s s
s W X I

s sP PP s

s W s W s









 
   

 

 
      

  

     
      

       

  1 2 2 0.d dP s P 

 

Because 2V L , V is bounded, according to Barb-

alat Lemma, V would converge to zero, so the tracking 

error E would converge to zero. In order to alleviate the 

input chattering caused by the discontinuous term 

( )sgn is  in Eq. (14), the saturation function ( )/isat s f is 

used to replace ( )sgn is ,7 where f is constant. 

5. Simulation Results 

In this paper, the electromagnetic force model is cal-

culated by Radia which is a free 3D magnetostatics 

computation software package developed by ESRF and 

running in Mathematica. The numerical calculation 

model established in Radia is shown in Fig. 2. The coil in 

 

Fig. 2. Numerical calculation model. 
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the numerical calculation model is 26mm in height, 

20mm in the inside diameter and 44mm in the outside 

diameter. The current density in the coil is 0.97A/mm2. 

The magnet is cylindrical with 50mm in diameter and 

10mm in height, its material is NdFeB and the remnant 

magnetization is 1.22T. The calculation sampling interval 

is 1mm along z-axis and x-axis. Figure. 3 shows that 

vibration of electromagnetic forces when the magnet 

moves along x-axis with different air gaps. 

In this section, two typical simulation results which 

including the trajectory and position tracking are 

presented. In both two simulations,  ( )f XD is supposed 

to be 1 2 1 20.3sin ( ),0,0.2cos ( ),0
T

t x x t x x鴿 + +・ , w is 

designed as [ ]0,sin ,0,sin
T

t t ，and the parameters of the 

controller are designed as: 1 2 [0.5,1]c c  , 1 2 0.5r r= = ,

1
ˆ (0) 30P = , 2

ˆ (0) 70P = , 0.1f = . 

The position tracking response performance of the 2-

DOF magnetic levitation system is shown in Fig. 4, 

where the levitated magnet can track the desire position 

32x = mm and 15z = mm. From the tracking curve 

shown in Fig. 4, we can see that the magnet can reach and 

keep balance at the desired position with small currents. 

The trajectory tracking response performance is 

shown in Fig. 5, from the simulation results, we can see 

that the levitated magnet can track the desired trajectories

6sin 22x t= + mm and 6sin(0.6 ) 9z t= + mm.  

6. Conclusions 

In this paper, electromagnetic forces obtained by the 

method of numerical calculation, which brings the 

uncertainties to the control matrix, to deal with this, an 

adaptive sliding model controller has been developed and 

applied to the 2-D maglev system, the simulations 

confirmed the efficacy of the proposed controllers .  
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Fig. 3.  Vibration of electromagnetic forces along x-axis with 

different air gaps 

 

Fig. 4.  Position tracking response performance. 

 

Fig. 5.  Trajectory tracking response performance 
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