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Abstract 

This paper deals with the consensus problem for multi-agent systems with fixed topologies. The agents are 

described by Lipschitz nonlinear systems. Only output information of each agent can be obtained from its neighbor 

agents. A distributed adaptive consensus algorithm via dynamic output feedback is proposed, in which the coupling 

weights between adjacent agents are time-varying and satisfy some designed adaptive laws. Provided examples are 

included to demonstrate the effectiveness of the proposed consensus algorithm.  
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1. Introduction 

With the rapid development of science and technology, 

the distributed coordinated control problem for multi-

agent systems (MASs) has received increasing attention. 

Consensus is an important and fundamental issue for 

coordinated control of the MASs, and has received more 

and more attention due to its broader range applications, 

such as flocking control, tracking control, unmanned 

aerial vehicle formation, underwater robot coordinated 

search and rescue, etc.  Over the past decade, research 

on consensus problem has achieved numerous 

meaningful results.1-6 Above the existing works that 

about consensus control for MASs are based on static 

state-feedback under a restrictive assumption that all the 

agents’ states can be measured, while the global 

information, for example the eigenvalue of the Laplace 

matrix, is used. But we know that in many real 

applications, the full states of the agents cannot be got, 

and the global information of the MASs may be 

unknown. Recently, an adaptive protocol was proposed 

to solve consensus for general linear MASs,7 where the 

states of agents were supposed to be known. The 

observer-based protocol was investigated. 8  

In this paper, the consensus problem of MASs with 

Lipschitz nonlinear dynamics under a fixed undirected 

connected topology is in focus. A distributed output 

feedback protocol is proposed, in which the output 

errors of the agents and the controller states' errors are 
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used to be the controller input. And in this designed 

protocol, the coupling weights between agents satisfy 

some designed adaptive law, in this way, the global 

information are avoided. Sufficient condition for the 

existence of this protocol is derived. Finally, numerical 

simulation shows the effectiveness of our obtained 

method. 

2. Problem Formulation 

The communication topology among agents is 

represented by a weighted connected undirected 

graph G V,Ε,Α   . Hereinto, V represents the set of 

nodes with
1 2

V={ , , }
N

v v v , Ε  is the set of undirected 

edges, and Α=[ ]
ij

a is the weighted adjacency matrix 

with 0, 0
ii ij

a a  . An undirected edge ija is denoted 

by the pair of nodes ( , ) Ei jv v  .The in-degree of 

nodes iv  is defined by
in

D ( )
ijj

i a  . Laplace matrix is 

defined as [ ]
ij

L l A    , 
in in

diag{D (1), D ( )}N  . 

Consider a multi-agent system consisting of 

N agents, and the dynamic of the ith agent is  

( ) ( ) ( )+ ( )
i i i i

x t Ax t f x Bu t   

( ) ( ) 1,2,
i i

y t Cx t i N                                

(1) 

where ( )
i

x t is the state, ( )
i

y t  is the measured output, 

and ( )
i

u t is the control input of the ith agent. ,A B and 

C are known real matrices. The nonlinear function 

( )
i

f x  satisfies the following Lipschitz condition: 

( ) ( )f x f y x y                                                 (2) 

where 0  is the known Lipschitz constant. 

For system (1), since some states cannot be measured 

in many cases, consider the following distributed 

consensus protocol 

( ) ( ) ( )+ ( )
oi o oi oi o ij ij

j

x t A x t f x B c t a    

[ ( ) ( ) ( ( ) ( ))]
i j oi oj

y t y t C x t x t                      (3) 

( ) ( ) 1,2,
i o oi

u t C x t i N   

where 
o

( )
i

x t  is the state, ,
o o

A B and 
o

C are the gain 

matrices to be determined, ( )
ij

c t is the time-varying 

coupling weight of agent i  and agent j  satisfying 

(0) (0)
ij ji

c c . 

The objective of this paper is to design a distributed 

consensus protocol (3) with an adaptive law about the 

( )
ij

c t  for the group of agents such that the states of 

system (1) achieve consensus asymptotically. That is, 

for any initial states (0)
i

x , the following is satisfied 

lim ( ) ( ) 0, , 1,2, ,
i j

t
x t x t i j N


    

Denote  

1

1
( ) ( ) ( )

N

i i j
j

e t x t x t
N 

  
 

and 

1

1
( ) ( ) ( ).

N

i i j
j

e t x t x t
N 

  
 

Then, it follows form (1) and (3) that  

1

1
( ) ( ) ( ) ( )+

N

i i i j o oi
j

e t Ae t f x f x BC e
N 

     

1

1
( ) ( ) ( ) ( )+ ( ) ( ( ) ( ))

N

oi o oi oi oj o ij ij i jj
j

e t A e t f x f x B C c t a e t e t
N 

      

( ) ( ( ) ( ))
o ij ij oi ojj

B C c t a e t e t                           (4) 

Choose the adaptive law described as follows 

( ) [( ( ) ( )) ( ( ) ( ))T

ij ij oi oj o i j
c t a e t e t QB C e t e t                 

(5) 

( ( ) ( )) ( ( ) ( ))], , 1,2,T

oi oj o oi oj
e t e t QB C e t e t i j N    I

f lim ( ) ( ) 0
t i j

e t e t


  and lim ( ) ( ) 0
t oi oj

e t e t


  .  

We can get that lim ( ) ( ) 0
t i j

x t x t


  . Then, the 

consensus problem of system (1) is equal to the 

asymptotical stability of the error system (4). In the 

following, we will focus on the asymptotical stability of 

system (4). 

3. Main Result 

Theorem 1. Given positive scalar  , if there exist a 

constant 0  , positive definite matrices , ,P R and 

three matrices ( 1,2,3)
i

V i  such that the following LMI 

holds 

3 2

2

(1,1) 0 0 0

* (2,2) 0

* * 0 0 0 0

0* * * 0 0 0

* * * * 0 0

* * * * * 0

* * * * * *

T

BV V P

V P R C

I

I

I

I

I





 
 
 
 
 

 
 
 

 
  

                                                                                       

(6) 

where 2

1 1
(1,1) , (2,2) +T TAP PA I V V    . The signal 

* denotes the symmetry part of a symmetry matrix. 

Then, under the protocol (3) with the adaptive law (5), 

the consensus of multi-agent system (1) can be solved. 

And the gain matrices of this protocol can be taken as: 
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1 1 1 1

1 2 3
, ,

o o o
A R V P B R V C V P      . 

Proof:  For system (4), consider the following 

Lyapunov-Krasovskii functional candidate  
2

1

1 1 1 1

( ( ) )
( ) ( ) ( ) ( ) ( )

2

N N N N
ijT T

i i oi oi
i i i j

c t
V t e t P e t e t Qe t




   


    

                                                                                       (7) 

where   is some appropriate constant. Taking the time 

derivative of Lyapunov functional ( )V t along the 

trajectory of system (4), we get 

1

1 1

1 1

( ) 2 ( ) ( ) 2 ( ) ( )

( ( ) ) ( ).

N N
T T

i i oi oi
i i

N N

ij ij
i j

V t e t P e t e t Qe t

c t c t



 

 

 

 

 


                       

From (4) and (5), we have 

1

1 1

1 1

1
( ) 2 ( ) [ ( ) ( ) ( )

1
+ ] 2 ( ) [ ( ) ( ) ( )

( ) ( ( ) ( ) ( ) ( ))]

N N
T

i i i j
i j

N N
T

o oi oi o oi oi oj
i j

o ij ij i j oi ojj

V t e t P Ae t f x f x
N

BC e e t Q A e t f x f x
N

B C c t a e t e t e t e t



 

 

  

  

   

 

 



(8) 

Since ( ) ( )
ij ji

c t c t , we get 

1

1

2 ( ) ( ) ( ( ) ( ))

( ) ( ( ) ( )) ( ( ) ( ))

N
T

oi o ij ij oi ojj
i

N
T

ij ij oi oj o oi ojj
i

e t QB C c t a e t e t

c t a e t e t QB C e t e t







  

 


   (9) 

Denote
1 1

1 1
( ), ( )

N N

i o oi
j j

x x t x x t
N N 

   , we have 

1 1

1 1

1 1
( ) ( ) ( ) ( ) ( ) ( )

1 1
( ) ( ) ( ) ( ) ( ) ( )

N N

i j i j
j j

N N

oi oj oi o o oj
j j

f x f x f x f x f x f x
N N

f x f x f x f x f x f x
N N

 

 

    

    

 

 

In
 
addition, because

1 1
( ) 0, ( ) 0

N N

i oii i
e t e t

 
   , we get 

1

1 1

1 1

1
2 ( ) [ ( ) ( )] 0

1
2 ( ) [ ( ) ( )] 0

N N
T

i j
i j

N N
T

oi o oj
i j

e t P f x f x
N

e t Q f x f x
N



 

 

 

 

 

 
 

Then, it follows from the Lipschitz condition (2) that  

1 2 1 2

1

2 2

1

1
2 ( ) [ ( ) ( )] ( )( ( ) ) ( )

1
2 ( ) [ ( ) ( )] ( )( ) ( )

N
T T

i i j i i
j

N
T T

oi oi oj oi oi
j

e t P f x f x e t P I e t
N

e t Q f x f x e t Q I e t
N





 





  

  




 

(10)
 

Let 

1 2

1 2

[ ( ), ( ), , ( )]

[ ( ), ( ), , ( )]

[ , ]

T T T T

N

T T T T

o o o oN

T T T

o

e e t e t e t

e e t e t e t

e e







   

Combing (5), (9) and (10) in to (8) yields 

( ) TV t   
                                                              (11)

 

where 

11 12

22

1 1 2 1 2

11

1

12

2 2

22

,
*

( ( ) )

( )

( ) 2

T

N

N o o

T

N o o o

I P A A P P I

I P BC L QB C

I QA A Q Q I L QB C





 

  



  
   

 

     

    

       

 

The graph G is connected, zero is a simple eigenvalue of 

Laplace matrix L , and all the other eigenvalues are 

positive. Then, there exists a unitary matrix 

RN NU  such that
1 2

diag{0, , , }T

N
U LU L     , 

where ( 2,3, , )
i

i N  are positive eigenvalues of L . 

Let diag{ , }T T

N N
U I U I    , we have 

( ) TV t   
                                                             (12)

 

If the inequality (6) is satisfied, choose  such 

that 2

2

N





 , and let R PQ , it is easy to get 

that ( ) 0V t  . Hence, ( )V t is bounded. By using the 

LaSalle’s Invariance Principle, the error system (4) is 

asymptotically stable. Then, the consensus problem of 

system (1) is solved. This completes the proof. 

4. Simulation Example 

A simulation example is illustrated to show the 

effectiveness of our results. Consider an undirected 

graph G , the communication topology is the same as Fig. 

18, in which there are eight agents. The elements of 

adjacency matrix A satisfy 1
ij ji

a a  with ( , ) E
i j

v v  . 

Consider system (1) with  

 2

0.9 0 0.1 0.5 0.2
, , ,

0 2 0.2 0 0.3

( ) 0 0.1sin( )
T

i i

A B C

f x x

     
       

     

 

 

It is easy to see that the nonlinear dynamic 

( )
i

f x satisfies the condition (2) with 0.1  . Suppose 

the initial states of system (1) are  1
(0) 5 1

T

x  , 

 2
(0) 0 1

T

x   ,  3
(0) 9 1

T

x  ,  4
(0) 5 1

T

x   , 

 6
(0) 2 0

T

x  ,  7
(0) 1.8 1

T

x    ,  8
(0) 6 2

T

x   . 
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By solving the inequality (6), we can obtain the 

dynamic output feedback gain matrices are  

0.2040 0
diag( 0.2, 0.2),

0 0.2040
o o

A B
 

     
 

 

 1.3945 1.9870
o

C   

 

Fig. 1. The states of multi-agent system (1) 

 

Fig. 2.  The coupling weights ( )
ij

c t  

    The state trajectories of nonlinear multi-agent system 

(1) are shown in Fig. 1. From Fig.1, we can see that the 

consensus control problem of system (1) under the 

distributed adaptive protocol (3) can be asymptotically 

solved. Curves of coupling weights are given in Fig.2. 

5. Conclusion 

The state consensus problem for multi agent systems 

with Lipschitz nonlinear dynamics has been investigated. 

Under that consideration of the unmeasured agent state, 

a distributed dynamic output feedback protocol with 

time varying coupling weights was designed. The 

coupling weights satisfy the designed adaptive law. A 

simulation example shows that the consensus problem 

under the designed distributed adaptive protocol can be 

asymptotically solved.  
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