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Abstract 

In this paper, a trajectory tracking controller based on kinematics for omnidirectional mobile robots with input 

constraints is presented. The tracking error model with the control law is proved to be global asymptotic stability by 

Lyapunov stability theory. The input limits can be described as an octahedron in three-dimensional space, so that a 

spatial vector analysis method is proposed to design time-varying feedback parameters to limit robot inputs. 

Simulation results show the feasibility and effectiveness of the control strategy. 

Keywords: omnidirectional mobile robot, tracking control, input constraints, time-varying feedback control. 

1. Introduction 

Omnidirectional mobile robots, with the ability of 

three degree-of-freedom motion in the plane, have been 

widely applied in different fields of the society, which 

has brought to the forefront in recent years. Many 

methods about tracking control have been proposed, such 

as sliding mode control1, model predictive control2, fuzzy 

control3 and their combinations. In the practical systems, 

the velocities of driving motors is limited, which means 

that the inputs of the mobile robot are subject to 

constraints. The control law will be affected by input 

constraints. Some results about tracking control with 

input constraints can be found. In Ref.4, the control 

signal to a given reference system was modified to make 

the error dynamics robust to the saturation constraints. In 

Ref.5, the diamond-shaped input constraints was 

considered which made the controller more effective. 

This paper mainly focuses on the tracking control of 

omnidirectional mobile robots with input constraints. 

The control law is proposed with time-varying feedback 

parameters to satisfy the input constraints. Then, a spatial 

vector analysis method is used to design parameters 

which is devoted to find a suitable robot inputs in the 

restricted area. And the tracking error system can be 

global asymptotic stability with the controller. Compar-

ing with existing results, this paper primarily contributes 

to the novel solution of input constraints of omnidirectio-

nal mobile robots. 

The structure of the rest paper is organized as follows. 

The section 2 introduces the tracking error system. In the 

section 3, the tracking controller is designed with input 

constraints using the spatial vector analysis method. 

Simulation results are presented to show the validity of 

the control law in the section 4. In the end, the section 5 

summarizes the whole paper and draws the conclusion. 
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2. Problem Statement 

2.1. Kinematic model of omnidirectional mobile 

robot 

As shown in Fig.1.(a), the four wheeled omnidirecti-

onal mobile robot is considered in this paper. The 

kinematic of omnidirectional mobile robots is 
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Where ( , )x y  are the robot position in Cartesian 

coordinates and   is the robot orientation. The control 

inputs of the robot are ( , , )x yv v   : ( , )x yv v  here denote 

robot’s longitudinal velocity and transverse velocity, and 

  represents the rotate speed of the robot. As a matter of 

fact, the kinematic of all kinds of omnidirectional robots 

including three wheeled robots or others with different 

omnidirectional wheels can be expressed as equation (1). 

In the Fig.1.(b), the framework of omnidirectional mo-

bile robot has been proposed. The transformation relation 

between the speeds 1 2 3 4( , , , )w w w wv v v v  of the four driving 

wheels  and the omnidirectional robot’s speed ( , , )x yv v   

is descried as the equation (2), where X Yd L L  and XL

is the X-axis distance from each wheel to the center of 

gravity (the similar definition for YL ). 
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2.2. Input constraints 

In the practical systems, the velocities of motors are 

limited. Assume that four driving wheels have the same 

mechanical characteristics, therefore, it is obvious that 

the same input constraint  ( 1,2,3,4)iwv V i   should 

be satisfied, and V  is the maximum wheel velocity. 

Using the constraint and the equation (2), we can deduce 

the equation (3) as follows: 

 1
/

yx
vv

V V V d


    (3) 

which can be described in three-dimensional space as 

shown in Fig.2: the restricted zone of robot inputs is an 

octahedron with the geometric representation. 

2.3. Error model of trajectory tracking 

Assume that the reference trajectory for the omnidirec-

tional mobile robot satisfies the kinematic 
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 (4) 

and the input constraints 

 1
/

yx
vv

V V V d


     (5) 

In the equation (4) and (5), ( , , , , , )r r r xr yr rx y v v   are 

the desired values for ( , , , , , )x yx y v v  . Besides,   is a 

constant with the condition 0 1  which guarantees 

the robot has the ability to track the reference trajectory 

successfully. 

We can define the tracking errors as follows: 

     
(a)                                           (b) 

Fig. 1. The schematic of trajectory tracking (a) and Four-wheel 

structure of the robot (b). 

 

Fig. 2. Input constraints area in three-dimensional space 
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Combining the equation (1) and (4) with differentiati-

ng both side of (6), error model can be expressed as 
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The destination of control law design is to find the 

appropriate inputs ( , , )x yv v   which are subject to the 

input constraints (3) to meet the desired outcome: 
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3. Controller Design 

3.1. Control law design without input constraints 

Inspired by the tracking error model and tracking 

control methods for differential-drive mobile robots, we 

come up with the control law 
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Where , ,x yk k k  are positive time-varying parameters 

and tk  is positive constants. In order to ensure the 

continuity of the robot inputs, we define sin / 1e e    

when 0e  . And it’s noticeable that sin /e e   is boun-

ded. The tracking errors ,e ex y and e  will converge to 

zero under the control law (9), which can be proven as 

follows: 

Let Lyapunov function be 

 

2

2 21

2

e

e e

t

V x y
k

 
   

 
 (10) 

Considering the tracking error system (7) and the 

controller (9), the derivative of this Lyapunov function 

can be expressed as  2 2 2/x e y e t eV k x k y k k     . 

When the conditions , , , 0x y tk k k k   are satisfied, we 

can infer 0V  and ( ) (0)V t V . Furthermore, it’s 

convenient to get the conclusion that , , 0e e ex y    as 

t    with Barbalat’s lemma.  

3.2. Feedback parameters design with input 

constraints 

Define the space vectors 

 

 

 

 

   

 

cos cos

0 0 ( )sin /

0 0 , 0 0

0 0

T

x y r

T

xr e yr e r

T

t xr e yr e e e

TT

x e y e

T

e

OE v v

OA v v

AB k v y v x

BC k x CD k y

DE k



  

 







 

 



 (11) 

The controller (7) can be expressed as a space vector

OE OA AB BC CD DE     . Fig.2 shows the relati-

onships of the vectors. According to the equation (5),  
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OA is in the input area. 

If the condition  
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holds, OB is in the octahedron. We can prove this result 

as follows: 
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We can obtain the value of tk from equation (13) 
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Define a function ( )x  which has three features:

( ) [0,1]  [0, ),x for x     ( )x is non-decreasing and

(0) 0, ( ) 1    . In order to design the time-varying 
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feedback parameters , ,x yk k k , we come up with a geom-

etric method. Sign function is defined as ( )sign x . 

As shown in Fig.2, we can make a line through B and 

in parallel with
xv , which goes through the constrained 

boundary with a point of intersection M . Take

( )eBC x BM , then, we can get the expression of
xk . 

And construct another line going through C and in 

parallel with yv , there will be another intersection N  in 

the constrained boundary, then make 2 ( )eCD y CN .It 

is easy to get the expression of yk  . We can use the same 

thought to define P and 3 ( )eDE DP  .  

In the end, we can get the controller 
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And the time-varying feedback parameters can be expre-

ssed as
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4. Simulation Results 

Set the reference trajectory as 0.75sin(2 / 45)rx t , 

sin(4 / 45)ry t and cos( /16) / 4r t   , and the 

initial robot pose is ( (0), (0), (0)) ( 0.5 ,0.2 ,0)x y m m   . 

Let 2 / , 0.7 , 0.01, 1, 0.99V m s d m        . Thus

1.6203e-04tk  . The simulation results are presented in 

Fig.3 and Fig.4. 

Fig.3 and Fig.4 show that the tracking errors will 

converge to zero with the control law (15), and the 

control inputs are always in the area of input constraints. 

5. Conclusion 

In this paper, the tracking control problem of omnid-

irectioanl mobile robot with input constraints has been 

solved. A controller with time-varying feedback parame-

ters is proposed using the spatial vector analysis method. 

The simulation results show that the control law can 

guarantee great tracking performance and the inputs will 

be located in the restricted area. 
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Fig. 4. Tracking velocity and control inputs. 

 

Fig. 4. Tracking trajectory and tracking errors. 
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