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Abstract 

This paper is concerned with the attitude/position estimation of a rigid-body using inertial and vision sensors. By 

employing the Newton-Euler method, a kinematic model is developed for the rigid-body by treating the inertial 

measurements as inputs. Based on the coordinate transformation, a nonlinear visual observation model is proposed 

by using the image coordinates of feature points as observations. Then the Extended Kalman filter (EKF) is utilized 

to estimate the attitude/position recursively. The effectiveness of the proposed algorithm is evaluated by simulation. 

Keywords: attitude and position estimation, EKF, inertial sensor, vision sensor. 

1. Introduction 

Accurate attitude/position estimation of rigid-body has 

received considerable attention in the past decades. This 

is partly due to the fact that it is generally required in 

many typical applications such as estimating the motion 

of a robot end-effector1, navigation for small unmanned 

aerial vehicle2, spacecraft relative navigation in 

rendezvous3 etc. The widely used way of obtaining 

position and orientation is using an inertial measurement 

unit (IMU) as the navigation sensor, which consists of a 

tri-axis gyroscope and a tri-axis accelerometer. However, 

integration over a long time period may lead to 

unbounded estimation errors if noises, offsets, scale 

errors and uncertainty in navigation model are present. 

Using vision as a standalone sensor for attitude/position 

estimation is also quite a standard way4, because of the 

ability to sense the actual attitude/position without 

accumulative errors. However, vision sensors can only 

sense the actual position but not the velocity and 

accelerate. Therefore, an underlying dynamic model for 

the motion of rigid-body is needed for accurate 

estimation when we use vision sensor alone.  

Motivated by the discussions above, the combination 

of the vision and inertial sensors has been recognized as 

a promising choice for accurate attitude and position 

estimation. For example, rigid body pose estimation 

using inertial sensors and a monocular camera is 

considered in Ref. 5, and it is shown how rotation 

estimation can be decoupled from position estimation. In 

Ref. 6, Chen studied the problem of the pose estimation 

of robotic end-effector with inertial and SE(3) measure-

ments. Among these literature, the measurements of 

vision sensor are the actual attitude and position that can 

be obtained by using machine vision algorithms like PNP, 

stereo-vision. Although the observation model is linear in 

such way, the expression of observation noises is 

complicated according to the complicated machine vision 

algorithms and costs huge computations. An alternative 
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way is applying the image coordinates of feature points 

as observations directly. 

In this paper, we attempt to estimate the orientation 

of a rigid-body using inertial and vision sensors. The 

inertial measurements are treated as inputs for 

developing the kinematic model, and a novel non-linear 

observation model is proposed by using the image 

coordinates of feature points. The EKF is utilized to 

address the nonlinear filtering problem. Simulation 

results are provided to evaluate the performance of the 

proposed algorithm. 

2. Problem Statement  

 

Fig. 1. System configuration and coordinate frames 

In this paper, we consider the case in which the motion 

of a rigid-body (noted as effector) is controlled by the 

ABB-120 robot as shown in Fig.1. The effector is 

equipped with a strap-down IMU and four infrared LED 

feature points. The vision sensor is a camera equipped 

with an infrared filter, which is fixed at a certain location 

in the base frame. 

2.1. Effector Kinematics 

As shown in Fig. 1. Denote 3B

e
p R  as the effector 

position in the base frame, evolving as: 
B B B B

e e e e
 p v v a                           (1) 

where 3B

e
v R and 3B

e
a R  are referred as the translational 

velocity and acceleration of SCP in the base frame, 

respectively.  

Denote Euler (3-2-1) rotation angles  
T

  Φ=  

as the effector attitude observed in the base frame, 

according to attitude kinematics: 

  E

e
Φ = T Φ ω                             (2) 

where 3E

e
ω R is the angular velocity of the effector as 

viewed in the effector frame and  
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T Φ              (3) 

Discretization of equations (1) and (2) is needed to 

design a Kalman Filter. Assume that B

e
a and E

e
ω are 

constants in each sampling interval  , 1
s s

kT k T     with 

sampling period
s

T .  

The state transition can be approximated by: 
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Φ Φ + T Φ ω
      (4) 

2.2. Transition models using IMU measurements 

The IMU in Fig. 1 consists of a tri-axis gyroscope and a 

tri-axis accelerometer that output: 
= I I

imu i

I I I

imu i



  

ω

a

ω ω m

a a g m
                            (5) 

where 
imu
ω and 

imu
a are IMU measurements, 

ω
m and 

a
m  

are measurement noises, and g  is the gravity vector. 

According to the rigid kinematic theorem, the angular 

velocity and acceleration relations between point
i

p and

e
p are as follows: 

      

E E I

e I i

B B E I I I I I I

e E I i i ei i i ei



  

ω R ω

a R R a S α r S ω S ω r
     (6) 

where E

I
R is a constant orientation matrix referred as the 

IMU frame attitude observed in the effector frame; I

ei
r is 

the position vector of
e

p relative to
i

p in IMU frame; I

i
α is 

the angular acceleration of the IMU, according to the 

assumption that E

e
ω is constant in each sampling interval, 

then  I

i
k α 0 ; B

E
R is the orientation matrix referred as 

the end-effector attitude observed in the base frame, 

which is given by 
cos cos sin cos cos sin sin sin sin cos sin cos

sin cos cos cos sin sin sin cos sin sin sin cos

sin cos sin cos cos

B
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R
; 

and  S is the cross product operator transforms a vector 

 
T

1 2 3
c c cc to a skew-symmetric matrix 

 
3 2
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Given (5) and (6) at the sampling interval, we have  
     
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   (7) 

Then the state transition equation (4) can be rewritten 

as 

           1 , ,k k k k k k         X φ X U Γ X U W    (8) 
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where        
T

B B

e e
k k k k   X p v Φ ,      

T

imu imu
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2.3. Observation models of Camera 

The rigid body in Fig. 1 contains four feature points noted 

as
T

, 1 4E E E E

i ix iy iz
p p p i   p , and the relation between 

the fixed camera and the base frame are noted as the 

orientation matrix C

B
R and the translation vector C

bc
r . By 

using the homogeneous transform matrices between the 

frames of Base, Effector and Camera, we obtain 

1 4
1 0 1 0 1 1

C C C B B E

i B bc E e i
i

       
        

       

p R r R p p
  (9) 

According to the camera pinhole model with the 

projective geometry, we obtain 

0

y

0

1 4

C

ix

i x C

iz

C

i

i y C

iz

p
u f u

p
i

p
v f v

p

 



 

                   (10) 

where 
x

f  and 
y

f  are pixel magnification factors,  0 0
,u v  

denotes the image coordinate of the camera's principal 

point, and  ,
i i

u v is the coordinate of the feature point
i

p  

in the image plane. In view of (9) and (10), denote  i
kZ

as the image coordinate     ,
i i

u k v k at time k , then the 

observation model of camera can be written as 

   , (k) 1 4E

i i i i
k k i     Z h X p V            (11) 

where
i

h is a 2-dim function derived by replacing C

i
p in 

equation (10) using equation (9), (k)V is the 

measurement noise and its covariance is 

    ,
i i ki kj

Cov k j V V R . 

3. Estimation based on EKF 

Since the state transition model (8) and the observation 

model (11) are both nonlinear, the EKF is used to update 

the effector motion state estimate  ˆ k kX  and its 

estimation error covariance matrix  k kP .   

The EKF is implemented as follows:  

1) Prediction. Denote  ˆ 1k kX  1k kP  ˆ 1
i

k kZ as 

the one step predictions of estimation, covariance matrix 

and observation at the time 1k  .  

Then as to (8), they can be obtained  

     ˆ ˆ1 ,k k k k k  
 

X φ X U             (12) 
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T

T

1 1 1

ˆ ˆ, ,
k

k k k k k k k k

k k k k k k
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where 
   

     
,

1
ˆ

k k
k k

k k kk
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φ X U
Ψ

X XX
 

   ˆ ˆ1 1 , E

i
k k k k   

 
Z h X p             (14) 

where
T

1 2 3 4

ˆ ˆ ˆ ˆ ˆ 
 

Z Z Z Z Z and  
T

1 2 3 4
h h h h h represent 

four feature points. 

2) Observation. As the feature points are infrared LED 

and the camera is equipped with an infrared filter, we can 

easy obtain the coordinates  1
i

k Z of the feature point

i
p in the image plane at the time 1k  .  

3) Update. When the new image is obtained at time 1k  , 

the filter can be computed as 

       T1 1 1 1k k k k k    K P H O       (15) 

where          
1

T

1 4
1 1 1 1

ki i
k k k k k diag




       O H P H R  

 
 

     
1 ,

1
ˆ1 11

E

i
k

k
k k kk

     
   

h X p
H

X XX
. 

Then the state estimate  ˆ 1 1k k X and its 

estimation error covariance matrix  1 1k k P  at time

1k  can be computed by 

         ˆ ˆ ˆ1 1 1 1 1 1k k k k k k k k        
 

X X + K Z Z (16) 

       1 1 1 1 1k k k k k k         P I K H P  (17) 

4. Simulation results 

As stated in section 2, the effector is controlled by the 

robot, in which the revolute joints are programmed as 

     40 10 5 60 8 10 cos 0,100
180 100

t
rad t




 
  

 
q = . 

And the robot forward kinematics with nominal D-H 

parameters is used to provide the attitude /position of the 

effector relative to base frame, which serve as the real. 

The sampling period of IMU and camera are both set as

0.1s , ignored the different sampling rate of the sensors. 

The noises of the IMU and camera sensors are assumed 

as  2~ 0,0.1
ω

m N  2~ 0,2.5
a

m N  2~ 0,5V N . The plots 

in Fig.2 and Fig.3 show the estimate results based on 

EKF and transition models only use IMU, respectively. 
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The simulation results suggest the effectiveness of the 

pro-posed method. 

 
Fig. 2.Estimate of Effector Motion Based on EKF 

 
Fig. 3. Estimate of Effector Motion Use IMU Only 

The measure model      k k k Z X V , which can 

be obtained by using the PNP algorithm (refer to 

solvepnp function in OpenCV), is also applied in EKF to 

compare against the proposed observation models noted 

as Pixels Measure. To illustrate the performance of the 

observation models, the root mean square error (RMSE) 

in position and attitude are shown and the simulation 

results are derived from 100 Monte Carlo runs. The 

RMSE in position and attitude are shown in Fig. 4. The 

simulation results suggest that the performance of the 

EKF can be improved by using the image coordinates 

(Pixels) of feature points as observations. 

 
Fig. 4. The RMSE in position and attitude 

    Notice from (7) that the IMU’s acceleration 

measurement is affected by the effector acceleration and 

the gravity, and the effector acceleration is much smaller 

than gravity in this simulation. Thus, it is very sensitive 

to noise, and lead to the estimate errors of position use 

IMU only are very large as shown in Fig.3. 

    Because of the complex computation, the measure-

ment noises covariance matrices in measurement model 

obtained by PNP algorithm are not calculated based on 

the pixels noises of the camera, it is set based on our 

experience in this simulation. Besides, the errors of the 

attitude measure are shown in Fig.5. It’s clear from the 

figure that the error is non-Gaussian. 

 
Fig. 5. The errors of the attitude measure  

5. Conclusion 

This paper investigated the attitude/position estimation 

of a rigid-body by using a measurement system consist 

of an inertial sensor and a vision sensor, and an EKF is 

applied to fuse these measurements. The motion states 

are propagated in time using the inertial measurements 

processed through the Newton-Euler equations, and the 

pixels coordinates of feature points are used as 

observation directly, which is different from using 

position and attitude coordinates in the camera frame. 

Simulation results suggest that the performance of the 

EKF can be improved by using the pixels coordinates of 

feature points as observations than calculating position 

and attitude coordinates through PNP algorithm. Future 

work would focus on the on-line tracking estimation 

experiments. 
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