Global sensor selection for maneuvering target tracking in clutter
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Abstract

This paper studies the problem of sensor selection for maneuvering target tracking in the cluttered environment. By
modeling the target dynamics as jump Markov linear systems, a decentralized tracking algorithm is developed by
applying the extended Kalman filter and the probabilistic data association technique. A cost function that minimizes
the expected filtered mean square position error is utilized and a sensor selection scheme is proposed. A numerical
example is provided to illustrate the effectiveness of the proposed approach.
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1. Introduction

Sensor or node selection has been found a wide range of
applications in diverse civilian and military areas such
as sensor placement for structures,’ chemical plant
control’ and wireless networks.”* In recent years the
problem of sensor selection for target tracking has been
investigated. As pointed out in Ref. 5, the main idea
beyond sensor selection is to optimize a cost function
that represents the localization accuracy constrained by
the number of active sensors. A cost function that
minimizes the geometrical dilution of precision (GDOP)
is used to derive the sensor selection scheme where the
best three sensors are selected. Based on the GDOP
measure, an adaptive sensor selection strategy has been
proposed in which the signal power measurements are
used. By combining with the prior information, which is
not accounted for the GDOP measure, global sensor

selection method that minimizes the expected filtered
mean square position error have been studied for
bearing-only tracking. Especially, two strategies
including the “add one sensor node at a time' and the
‘simplex' have been developed for selecting the best
subset of active sensors.® These results are extended to
propose local sensor selection schemes which do not
require the knowledge of all the sensors locations in the
networks.

In the target tracking community, the single model
approach is used mainly for targets with fixed kinematic
behaviors while for targets with multiple kinematics
behaviors (i.e., maneuvering targets), the multiple
model tracking algorithm is preferred.” The problem of
sensor selection for maneuvering target tracking has
been investigated in Ref. 8 and 9. To our knowledge,
little research has been done to deal with the problem of
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sensor selection for target tracking in the cluttered
environment.

In this paper, we consider the problem of sensor
selection for maneuvering target tracking in the
cluttered environment. By using the global knowledge
of all sensors locations, a cost function that minimizes
the expected filtered mean square localization error is
developed to select a given number of active sensors. As
the cost function is derived based on the decentralized
structure, we investigate how to derive the decentralized
fusion formula by applying the basic extended Kalman
filter (EKF) and the PDA technique so that the clutter
information can be combined into the cost function.
Meanwhile, we have to circumvent the difficulty
encountered in multiple model decentralized fusion.'”
By minimizing the cost function, a sensor selection
scheme is proposed based on the “add one sensor node
at a time' strategy. Simulations are provided to illustrate
the effectiveness of the proposed algorithm.

2. Problem formulation

In this paper, we consider a two-dimensional (2-D)
target-observer scenario. The target dynamics is
modeled as the following coordinated turn model

1 O sin(az)uT) _ l—coz)(wT)
O 1 1-cos(wT ) sin(wT)
X = v Y X + Wy
0 cos(wT) sin(wT)
00 sin(a)T)r cos(wT)

where X, = (X, Yy, X, Yi) denotes the target state.
(X, Yy ) and (X, Y, ) represent the target position and
velocity components, respectively. @ denotes the turn
rate and T is the sampling time period. @, is zero-mean
white Gaussian noise with covariance Q, .

To formulate the target dynamics into the framework
of jump Markov systems, we assume that at any time
the target motion obeys one of M dynamic behavior
models, which can be described by the above
coordinated turn model with different turn rate. The
switching between models is governed by a time-

homogeneous first-order Markov chain I, with known
transition probability 77; = P{rk =jlr.= i}.

A radio receiver that provides the signal power
measurement is used throughout this paper. The target-

originated power measurement from sensor S can be
modeled in a logarithmic form
Z,s = K=1077100,, (1, o) +Vy

s :\/(Xk -%) + (Y —¥s)% s=12,--,N
where K and 77 €[2,5] denote the transmission power

and the path loss exponent, respectively. They are
dependent on the radio environment, the antenna
characteristics and so on. (x,,y,) represents the position

of sensor S and r, . is the relative distance between
sensor S and the target. N is the number of sensors.
V, , is zero-mean white Gaussian with variance R, .

Our aim is to find the set of active sensors that
optimizes the cost function. As the clutter is considered,
we should investigate how to combine the clutter
information into the cost function.

3.SENSOR SELECTION FOR MANEUVERING
TARGET TRACKING IN CLUTTER

Decentralized fusion of EKF-PDA

Assume that the target dynamics and the

measurement model can be represented by
Xaa = Py X + W,
Zk,S = hS(Xk)+Vk'sls :1a21“ %y N

where @, and the covariance 2., of W, are derived by

the best-fitting Gaussian approximation. hy is the

nonlinear measurement function of sensor S . By
combining the EKF and the PDA technique, a single
forward run of the tracking algorithm proceeds as
follows for each sensor s.

First of all, the predicted mean and covariance are
obtained by using a standard Kalman filter

oS _ )
Xkt = PoeaXie_an

S _ S T
Pk = Qo aP s @i + 2,

Then, the predicted measurement and the innovation
covariance can be derived as

5S oS
L1 = hs (Xk|k—1)
i i 5i
Vies = Zis — Lkka
T
Sis = Hk,sts|k—lHk,s + Ry
where H, ¢ is the Jacobian matrix of the nonlinear

function N, evaluated at Xy ;.
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After receiving the measurements Z, by sensor s, ZL]S
is validated if
i 5 TQ-1f5i 55
[Zk,s - Zk|k—1] Sk,s[zk,s - Zk|k—1] <y
where y is the gate threshold.

By assuming that the number of clutter in the validated
region is assumed to be Poisson distributed, a
parametric PDA technique is used to generate the
association event probability

ﬁO _ bks
ks ™ my 2
bk,s +Z] -1 dk]s
; b, .
ﬁk,s_ Zm“dl y —1,-.-,mkvs
Where
dli,s = exp(_O'S[Vli,s]T SI<_15VII<5)
b, =428, , [/ 1= Tofe
k,s k,s P

D
p, Is the detection probability, p is the probability that

the measurement originated from the target falls into the
validated region, and A is the spatial density of clutter.
Finally, the updated estimates can be computed by
)A(lf\k = )A(IZH + KysVis
Pk|k = Pks|k—1 - Kk,s(sk,s - Bk,s)KkT,s
where

M2
_ iy
s Zﬂk,svk,s
i=1

_ DS T -1
Kk,s - I:)k|k—1Hk,ssk,s
My 2

0 i i i T T
Bk,s :ﬂk,ssk,s +Zﬁl:,svll<,s[vll<,s] _Vk,svk,s
i=1

In order to develop the decentralized fusion formula, we
would like to rewrite the updated mean and covariance
as the same form of the usual Kalman filter, i.e.,

Xk|k = Xk|k at Kk (Zes— Zyw 1)
Pks\k = Pks|k -1 Kk sSk szTs
K, ks = Pk 1HkSS
§k,s = Hk,stTk—lHJ,s - ﬁ|<,s
It can be observed that our aim is to define ’Z'k’S and
ﬁk,s .To this end, we have
Rk,sgk,sﬁg,s = Pka—lHl;r,sgkiin,stslk—l
= Ky sSsSeiSk Kr,

Global sensor selection for

§k,s = (Sk’ls - Slzls Bk,sslzls)-l
= Sk‘s - Skssk_ls (Sk_lsskssk—ls - Bk_ls)_lsk_lssks
=S+ (Bes—Sis) ™
Therefore,
Res = Res +(Bis —Sis) ™
On the other hand, we have
KioVies Kio(Zos — 2y 1) =0
which leads to
> -1 -1y-1g-1 5
Zys =[1+(Bes —Scs) " Sislvis + Zlilk—l
Based on the above EKF-PDA tracking algorithm, we
can obtain the decentralized fusion formula. We assume

that each sensor knows its position and they share the
common prior information. Suppose each active sensor

have obtained estimates )A(kfukf1 and Pkfukf1 at time

step k-1, the filtered estimates can be derived by each
sensor via communicating with other active sensors

Kk = ch—lxk—]Jk—l
T
Pkt = PR @y + 24

o -1 T p-1r3 o o
X = P [P 1 Kpes + Z Hy sReslZes = (R s) + Hi s K]l

seN,

-1 -15-1
Pk|k: k|k 1+2HkstsHks

seN,

Sensor selection

When the signal power measurement is applied, the
updated covariance for the decentralized fusion of EKF-
PDA can be rewritten as

J. =] +J'O
700

Where J; = Pk]kl, J,= kﬁland

cos’ ¢, .,sing, . cos
=(107710g,, e)2 Z Rk_lsrk_g e s -
sing, cos¢kls,sm Ds

seN,
Note that
H, ,=-10nlog,e [rk 5 COS@ ¢, N sm(/ﬁk .»0, 0]

where (rk,syﬂ,s) is the position of sensor s relative to

the predicted target position in polar coordinates.

The aim of sensor selection is to search for the
minimum expected mean square posterior error which
can be expressed in terms of the posterior Fisher
information matrix. Specifically, the cost function to be
minimized for sensor selection is

p(N,)=[J f_l]l,l +[J f_l]2,2
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Where [A]; ; denotes the (i,j)th element of the matrix A

(N) tr{J }+tr{d}  tr{J }+tr{J}
PN,)=—-= =z

|3, +J| |3, [+13 |+
where ‘tr’ represents the trace of the matrix, and

J p [J p]1:2,1:2 - [J p]1:2,3:4 ([J p]3:4,324)_1["] p]3;4,1:2
3¢ =(@0nlog,,€)* Y I3, 1R r 2 sin’ g

seN,
+[3p]2.2 'F\;lzlerf COSZ ¢k,s - 2[3p ]1,2 ‘Fslzlsrkf Sin¢K,s Cos¢k,s]

A practical strategy called as ‘add one sensor node at a

time’. For this strategy, an initial active set is

established by using the exhaustive search, which

includes two active sensor nodes and requires

evaluating p(N,) over N(N-1)/2 configurations. Then

the rest of sensor nodes are added to the initial active set
one at a time by minimizing p(N,) .

4. SIMULATIONS

Three models corresponding to different turn rates are
used. The sampling period is taken to be 1 s for target
motion model. The network consists of 30 sensors
randomly scattered over a field. The sensing range for
each sensor is 25 m. For the signal power measurements,
the transmission power is taken to be 9 dBm and the
path loss exponent is 3. The variance of the
measurement noise is 0.2 for all sensors. The detection
probability and the gate probability are set to 0.997 and
0.999, respectively. The gate threshold is 16 and the
spatial density of clutter is 0.1.

In the simulations, the root mean square error (RMSE)
in position is used for performance comparison. The
RMSE in position of the proposed algorithm with
different numbers of active sensors is shown in Fig.1. It
can be observed that the tracking performance is
improved as the number of active sensors is used and
the best performance is achieved when all the active
sensors in the sensing range are utilized.

5.CONCLUSION

In this paper, we propose a global sensor selection
scheme for tracking maneuvering target in the cluttered
environment. A formulation of PDA for decentralized
fusion is derived which helps the definition of the cost
function for sensor selection. This is implemented by
developing novel measurement vector and noise
covariance matrix combining the clutter information.
Simulation results are provided to verify that the
proposed algorithm.
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Fig.1 RMSE in position of the proposed filter.
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