
© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan 

 

Modified Quantum Particle Swarm Optimization  

for Chaos Synchronization 

Chia-Nan Ko 

Department of Automation Engineering, Nan Kai University of Technology 

t105@nkut.edu.tw 

Ching-I Lee 

Department of Automation Engineering, Nan Kai University of Technology 

lcy@nkut.edu.tw 

 

 

 

 

Abstract 

In this study, a modified quantum-behaved particle swarm optimization (MQPSO) based on hybrid evolution 

(HEMQPSO) approach is proposed to synchronize chaotic systems, in which the proposed HEMQPSO algorithm 

combines the conceptions of genetic algorithm (GA) and adaptive annealing learning algorithm with the MQPSO 

algorithm to search optimal solutions. Simulation results are illustrated to verify the performance of chaos 

synchronization using the proposed HEMQPSO approach. From the numerical simulations and comparisons with 

other extant evolutionary methods in chaotic systems, the validity and superiority of the HEMQPSO approach are 

verified. 

Keywords: Quantum-behaved particle swarm optimization, Chaotic system, Genetic algorithm,  

Chaos synchronization, Hybrid evolution. 

 
 

 

1. Introduction 

A chaotic system is a nonlinear deterministic system 

that has some special features of sensitive dependence on 

initial conditions and unstable bounded trajectories in the 

phase space. Synchronization in chaotic dynamic systems 

attains much interest among scientists from various fields. 

Applications in chaotic systems synchronization are very 

significant in nonlinear fields. Recently, some researchers 

have paid much attention to identification and 

synchronization of chaotic systems.1-3 Due to their 

characteristics sensitivity to initial conditions, chaotic 

systems are not easy to synchronize. Recently, some  

 

 

researchers have endeavored to improve the 

synchronization of chaotic time series.4-8 In this article, 

we propose a scheme to synchronize Chen system and 

Genesio system with known parameters.6 

Although the original PSO algorithm possesses the 

ability of high convergent speed, easily falling in some 

local optima is its fatal defect. Many researchers9,10 have 

presented revised PSO algorithms and obtained good 

results. Another improvement on traditional PSO 

algorithm is quantum-behaved particle swarm 

optimization (QPSO).11-14 However, in QPSO, particles 

fall into local optimal state in multimode optimization 
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problems and cannot find any better state, the QPSO 

algorithm will take on the premature phenomenon. 

To overcome the premature phenomenon in QPSO, a 

modified quantum-behaved particle swarm optimization 

(MQPSO) based on hybrid evolution (HEMQPSO) 

algorithm is proposed to synchronize chaotic systems will 

be proposed to perform the synchronization of chaotic 

systems in this study. In HEMQPSO, the significant 

improvement is that the evolutionary algorithm combines 

the concept of mutation algorithm in GA and adaptive 

annealing learning similar to SA with QPSO to achieve 

global search and defeat premature phenomenon in 

searching optimal solutions.  From the illustrated results 

for three chaotic dynamical systems, the synchronization 

performance of the proposed HEMQPSO approach is 

demonstrated. 

 

 

 

2. Modified Quantum Particle Swarm   

Optimization 

In the PSO algorithm, each particle keeps trajectory of 

its coordinates in the problem space. The coordinate of 

each particle is related to its own best position (local best 

position) and the global best position achieved so far. The 

trajectories of particles are updated according to the 

following equations: 
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particle at generation k in n-dimensional search space; 
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p  and   

gp  are the best position of the ith particle and 

the global best position; w is the inertia weight; 
1

c  and 

2
c  are cognitive and social constriction coefficients, 

respectively; 
1

r  and 
2

r  are random numbers between 0 

and 1.  

From the view of classical dynamics, to avoid 

explosion and guarantee convergence, particles must be 

bounded and fly in an attractive potential field. Clerc and 

Kennedy13 have proved that if these coefficients are 

properly defined, the particle’s position 
i

p will converge 

to the center of potential field, ],,,[
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Inspired by the behavior that particles move in a 

bounded state and preserve the global search ability, Sun 

et al.15 proposed the QPSO algorithm. In the QPSO 

model, particles move in a quantum multi-dimensional 

space, the state of particles is usually depicted by a 

normalized wave function. That is, a single particle with 

m mass is subjected to the influence of a potential field in 

quantum space and the wave function of this particle is 

governed by the Schrödinger equation.12 The solution of 

time-independent Schrödinger equation for this system in 

one dimensional space can be expressed as12: 

  ,
1

ln
2













L
pfp c

ii
 (4) 

where   is a random number uniformly distributed on   

[0, 1] and L is the characteristic length of delta potential 

well (called "Creativity" of particles) which specifies the 

search scope of a particle. In order to improve 

performance, Sun et al.15 employ a mainstream thought 

point to evaluate the parameter. The mainstream thought 

point and can be expressed as the following forms: 
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where   is a creative coefficient which is used to adjust 

the convergence speed of an individual particle and the 

performance of this algorithm. 

Firstly, in order to achieve global searching,   

should be set to a large number at the beginning. Then the 

parameter   is adjusted decreasingly. The decreasing 

rate of   can be linear, but nonlinear revision according 

to the convergence of optimization process is more 

reasonable. The creative coefficient   with adaptive 

annealing learning mechanism according to the change 

rate of optimal estimation has the form: 

   fit
max

 , (7) 

  l

i

g ppfit  ,   (8) 

where   is step length of  , fit  is the change rate of 

optimal estimation so far. The mechanism of adaptive 

annealing learning can overcome the stagnation problem 

to accelerate the convergent speed. Another improvement 
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of the HEMQPSO is elitist reproduction. The mutation 

mechanism is usually used for keeping diversity and 

avoiding premature.  

3. Problem Formulation 

This section presents two chaos systems of Chen 

system and Genesio system to synchronize their behavior. 

The dynamic equation of Genesio system is given by 
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r  for the chaotic system (9). Chen system is 

described by 
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when  ,35
1
q  ,28

2
q  ,3

3
q  the system (10) is 

chaotic. 

4. Simulation Results 

Consider that Genesio system (9) is the drive system 

and the controlled Chen system (11) is the response 

system. The synchronization behavior between Chen 

system and Genesio system using active control is 

observed.  
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Three control functions ,
1

u  ,
2

u ,
3

u  are introduced in 

system (11), in order to determine the control functions to 

realize synchronization between systems (9) and (11), we 

subtract (9) from (11) and get the deviation of errors 

system can be expressed as  
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where ,ˆ
111

xxe  ,ˆ
222

xxe  ,ˆ
333

xxe  The error 

system (12) is asymptotically stable by linear control 

theory.6 

The sampling time is equal to 0.005 and the number of 

states is set as 200 for three simulated examples. The 

initial values of the drive and response systems are 

,1)0(ˆ
1
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,5)0(
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x  respectively. In HEMQPSO, the 

parameters,
max

  and  in Eq. (7), are set as 0.5 and 0.5. 

Comparisons of HEQPSO16 and HEMQPSO are shown in 

Figs. 1 and 2, respectively, in which the superiority of the 

proposed HEMQPSO is verified. 

5. Conclusions 

This paper presents the proposed HEMQPSO to 

synchronize chaotic systems. The evolutionary algorithm 

can overcome the stagnation in searching global solutions 

for synchronizing two chaotic systems. From the 

simulation results, we can conclude that the proposed 

HEMQPSO method has good performance for chaos 

synchronization. The future work is to apply HEMQPSO 

for investigating more complex chaotic systems. 
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Fig. 1. Synchronization errors between Chen and Genesio 

systems via active control with HEQPSO. 
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Fig. 2. Synchronization errors between Chen and Genesio 

systems via active control with HEMQPSO. 
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