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Abstract 

Alternating Turing machines were introduced in 1981 as a generalization of nondeterministic Turing machines and 

as a mechanism to model parallel computation. On the other hand, we have no enough techniques which we can show 

that some concrete four-dimensional language is not accepted by any space-bounded four-dimensional alternating 

Turing machines. The main purpose of this paper is to present a technique which we can show that some four-

dimensional language is not accepted by any space-bounded four-dimensional alternating Turing machines. 

Concretely speaking, we show that the set of all four-dimensional input tapes over {0,l}, which each top half part is 

equal to each bottom half part, is not accepted by any L(m) space-bounded four-dimensional alternating Turing 

machines for any function L(m) smaller than log m. 
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1. Introduction and Preliminaries 

We have no enough techniques which we can show 

that some concrete four-dimensional language is not  

 

 

accepted by any space-bounded four-dimensional 

alternating Turing machines [1, 2]. The main purpose of 

this paper is to present a technique which we can show 
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that some four-dimensional language is not accepted by 

any space-bounded four-dimensional alternating Turing 

machines. Concretely speaking, we show that the set of 

all four-dimensional input tapes over {0,l}, which each 

top half part is equal to each bottom half part, is not 

accepted by any L(m) space-bounded four-dimensional 

alternating Turing machines for any function L(m) such 

that limm→∞[L(m)/log m] = 0. We let each side-length of 

each four-dimensional input tape of these automata be 

equivalent in order to increase the theoretical interest. 

Let Σ be a finite set of symbols. A three-dimensional 

tape over Σ is a four-dimensional rectangular array of 

elements of Σ. The set of all four-dimensional tapes over 

Σ is denoted by Σ（４）. Given a tape x∈Σ（４）, for each 

integer j( 41  j ), we let )(xm j
 be the length of x  

along the jth axis. The set of all x  with l1(x)=m1, 

l2(x)=m2, l3(x)=m3, and l4(x)=m4  denoted by Σ(m
1
,m

2
,m

3
,m

4
). 

If 1 ≤ij≤lj(x) for each )41(  jj , let x(i1,i2,i3,i4) denote 

the symbol in x  with coordinates (i1,i2,i3,i4). 

Furthermore, we define x[(i1,i2,i3,i4),(i1’,i2’,i3’,i4’)], when 

)('1 xlii jjj   for each integer )41(  jj , as the four-

dimensional tape y satisfying the following (i) and (ii): 

(i) for each  j(1≤j≤4), lj(y)=i’j-ij+1; 

(ii) for each  r1, r2, r3, r4(1≤ r1 ≤ l1(y), 1 ≤ r2 ≤ l2(y), 

1≤r3≤l3(y), 1≤r4≤l4(y)), y(r1, r2, r3, r4) = x(r1+i1-1, r2+i2-

1, r3+i3-1, r4+i4-1). (We call x[(i1, i2, i3, i4), (i’1, i’2, i’3, 

i’4)] x[(i1, i2, i3, i4), (i’1, i’2, i’3, i’4)]-segment of x.); 

A four-dimensional alternating Turing machine (4-

ATM) M is defined by the 7-tuple M = (Q, q0, U, F, Σ, Γ, 

δ), where (1) Q is a finite set of states; (2) q0Q is the 

initial state; (3) U   Q is the set of universal states; (4) 

FQ is the set of accepting states; (5) Σ is a finite input 

alphabet (#Σ is the boundary symbol); (6) Γ is a finite 

storage-tape alphabet (BΓ is the boundary symbol), 

and (7) δ  (Q x (Σ∪{#}) x Γ) x (Q x (Γ - {B}) x {east, 

west, south, north, up, down, past, future, no move} x 

{right, left, no move}) is the next-move relation.  

A state q in Q - U is said to be existential. The machine 

M has a read-only four-dimensional input tape with 

boundary symbols # 's and one semi-infinite storage tape, 

initially blank. Of course, M has a finite control, an input 

head, and a storage-tape head. A position is assigned to 

each cell of the read-only input tape and to each cell of 

the storage tape. A step of M consists of reading one 

symbol from each tape, writing a symbol on the storage 

tape, moving the input and storage heads in specified 

directions, and entering a new state, in accordance with 

the next-move relation δ. Note that the machine cannot 

write the blank symbol. If the input head falls off the 

input tape, or if the storage head falls off the storage tape 

(by moving left), then the machine M can make no further 

move. 

 A configuration of a 4-ATM M =  (Q, q0, U, F, Σ, Γ, δ) 

is a pair of an element of Σ（４）and an element of CM = 

(NU{0})3 x SM , where SM =Q x (Γ-{B})* x N and N 

denotes the set of all the positive integers. The first 

component x of a configuration c = (x, ((il, i2, i3, i4), (q, 

α, j))) represents the input to M. The second component 

(il, i2, i3, i4) of c represents the input-head position. The 

third component (q, α, j) of c represents the state of the 

finite control, nonblank contents of the storage tape, and 

the storage-head position. An element of CM is called a 

semi-configuration of M and an element of SM is called 

a storage state of M. If q is the state associated with 

configuration c, then c is said to be a universal 

(existential, accepting) configuration if q is a universal 

(existential, accepting) state. The initial configuration of 

M on input x is IM (x) = (x, (1, 1, 1, 1), (q0, λ, 1)), where 

λ is the null string. 

Given M =  (Q, q0, U, F, Σ, Γ, δ) , we write c ┠M c' 

and say c' is a successor of c if configuration c' follows 

from configuration c in one step of M, according to the 

transition rules δ. The relation ┠M  is not necessarily 

single-valued, because δ is not. A computation path of 

M on x is a sequence. C0 ┠M Cl ┠M …┠M Cn (n ≥ 0), 

where C0 = IM (x). A computation tree of M is a finite, 

nonempty labeled tree with the following properties: (1) 

Each node v of the tree is labeled with a configuration 

l(v), (2) If v is an internal node (a nonleaf) of the tree, 

l(v) is universal and {c | l(v)┠M c} = {cl,…, ck}, then v 

has exactly k children v1,…,vk such that l(vi) =ci (1≤ i ≤ 

k), and (3) If v is an internal node of the tree and l(v) is 

existential, then v has exactly one child u such that l(v) 

┠M  l(u). A computation tree of M on input x is a 

computation tree of M whose root is labeled with IM (x). 

An accepting computation tree of M on x is a 

computation tree of M on x whose leaves are all labeled 

with accepting configurations. We say that M accepts x 

if there is an accepting computation tree of M on input 

x. Define T(M) = {x ∈Σ（４）| M accepts x}. 

In this paper, we shall concentrate on investigating the 

properties of 4-ATM's whose each side-length of each 

four-dimensional input tape is equivalent and whose 

storage tapes are bounded (in length) to use. 
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Let L(m) : N → N be a function with one variable m. 

With each 4-ATM M we associate a space complexity 

function SPACE that takes configurations to natural 

numbers. That is, for each configuration c = (x, ((il, i2, 

i3, i4), (q, α, j))), let SPACE(c) =|α|. We say that M is 

L(m) space-bounded if for all m ≥ 1 and for each x with 

l1(x) =  l2(x) = l3(x) = l4(x) = m, if x is accepted by M, 

then there is an accepting computation tree of M on 

input x such that for each node v of the tree, 

SPACE(l(v)) ≤ L(m). We denote an L (m) space-

bounded 4-ATM by 4-ATM (L (m)). L [4-ATM (L (m))] 

= {T | T= T (M) for some 4-ATM (L (m)) M}. 

2. Main Result 

[Theorem 1] Let T={x ∈{0, 1}(4) |∃m ≤ 1 [l1(x) = l2(x) 

= l3(x) = l4(x) =2m & x[(l, 1, 1, 1), (2m, 2m, 2m, m)] = 

x[(l, 1, 1, m + 1), (2m, 2m, 2m, 2m)]]). Then, T L [4-

ATM (L (m))] for any L (m) = o (log m).  

(Proof) Suppose that there exists a 4-ATM (L (m)) M 

accepting T, where L (m) = o (log m). We assume, 

without loss of generality, that M moves a storage-tape 

head after changing its state and writing a new symbol 

on the storage tape, and moves an input head finally. 

For each m ≤ 1, let V (m) = {x ∈T | l1(x) = l2(x) = l3(x) 

= l4(x) =2m}. For each x in V (m), let t(x) be one fixed 

accepting computation tree of M on x such that each 

node v of the tree satisfies SPACE(l(v)) ≤ L(2m), where 

for each node v of t(x), l(v) represents the label of v. 

Without loss of generality, we assume that for any t(x);    

 (i) any two different nodes on any path of t(x) are 

labeled by different configurations, and, 

(ii) if any different nodes of t(x) have the same label, 

then the subtrees [of t(x)] with these nodes as the roots 

are identical.  

For each x in V(m), let t(m), which we call the reduced 

accepting computation tree of M on x, be a tree obtained 

from t(x) by the following procedure [for each node v of 

t(x), we denote by d(v) the length of the path from the 

root of t(x) to v (i.e., the number of edges from the root 

of t(x) to v)]:  

Begin 

 1. Tr = t(x) 

 2. i = 1 

 3. Let N (i) ≜ {v | v is node of Tr and d(v) ≤i}. Divide 

N(i) as follows: N(i) = P(l) ⋃ P(2) ⋃…⋃ P(ji), where: (1) 

if ia = ib(l≤  ia, ib ≤ ji), then P(ia) ∩ P(ib) = φ, and (2) 

for each ia(1 ≤ ia ≤ ji) and for each va, Vb ∈ P(ia), l(va) 

=l(vb) (i.e., the labels of va and vb are identical). For each 

ia (1 ≤ia ≤ ji), let dis(ia) = min{d(v) |  v ∈ P(ia)} and let 

n(ia) be the leftmost node among those nodes v in P(ia) 

such that d(v) = dis(ia). Further, let N'(i) = N(i) - {n(l), 

n(2), …, n(ji)}. By removing from Tr all the subtrees 

whose roots are included in N'(i), we make the new Tr. 

4. If the height of Tr (i.e., the length of the longest 

path of Tr ) is less than or equal to i, then we let t'(x)= 

Tr. Otherwise, we let i = i + 1 and go to step 3.  

end  

[Example 1] Let x ∈ V(m) and t(x) be a tree. Here, 

suppose that nodes A and D have the same label, nodes 

B and C have the same label, and other nodes each have 

different labels. [From the preceding assumption (ii) 

concerning t(x), identical.] Then, t'(x) is a tree. That is, 

t'(x) is obtained from t(x) by moving the subtree with 

nodes C and D as the roots from t(x). 

 It is easily seen that for each x in V (m), all the nodes of 

t'(x) have labels different from one another, and the set 

of all the paths from root of t'(x) to the leaves of t'(x) 

represents necessary and sufficient accepting 

computations of M on x. From t'(x), we now define an 

extended crossing sequence (ECS) at the boundary 

between the top and bottom halves of x. The concept of 

ECS was first introduced in [3]. We relabel each node v 

of t'(x), as follows. (We denote this new labeling by l'.) 

For each node v of t'(x), let f(v) denote the father node 

of v. Then, for each node v of t'(x), where x ∈ V(m), let 

if, for some storage states (q, α, j) and (q', α', j'),  

(i) l(f(v)) = (x, (il , i2, i3, m), (q', α', j')) and 

l(v) =  (x, (il , i2, i3, m+1), (q, α, j)) , or  

(ii) l(f(v)) = (x, (il , i2, i3, m+1), (q', α', j')) and  

l(v) =  (x, (il , i2, i3, m), (q, α, j)) , then  

l'(v) = ((il , i2, i3), (q, α, j))  

else 

l'(v) = *. 

That is, if the movement of M from f (v) to v represents 

the action of crossing the boundary between the top and 

bottom halves of x, then v is newly labeled by (il , i2, i3), 

(q, α, j)), where (q, α, j) is the storage state component 

of l(v). Otherwise, v is newly labeled by *. From the 

newly labeled t'(x), we extract those nodes v such that 

l'(rn) = *, and by using these nodes, we construct a tree 

t"(x) satisfying the following condition: 

(A) For any node v of t"(x), nodes v1, v2, …,vS are  

children of v if and only if v1, v2, …,vS are descendants 

of v in t'(x) and l'(u) = * for each node u on the path 
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from v to each vi. In general, there can be two or more 

such trees t"(x). Let these trees be t1"(x),…, tn"(x). For 

each node v of each ti"(x) (l  ≤ i ≤ n), we now define an 

element of ECS (EECS) inductively as follows: Let  

l'(v) = ((il , i2, i3), (q, α, j)). 

(1) If v is a leaf, then [((il , i2, i3), (q, α, j))] is an EECS 

of v.  

(2) If v has only one child v1 and Q1 = [((il1 , i21, i31), 

(q1, α1, j1))P] is an EECS of v1, then [((il , i2, i3), (q, α, j)) 

((il1 , i21, i31), (q1, α1, j1))P] is an EECS of v. 

(3) If v has d(≥2) children v1, …, vd and Q1, …, Qd are 

EECS's of v1, …, vd, respectively, then [((il , i2, i3), (q, α, 

j)) Qσ(1)…Qσ(d)] is an EECS of v for any permutation σ : 

{1, …, d}→{1, …, d}. 

(4) An EECS of v is defined only by the preceding 

statements (1), (2), and (3).  

Now, let Q1, …, Qn be EECS's of the root nodes of 

t1"(x),…, tn"(x), respectively. Then, for any permutation 

σ : {1, …, n}→{l, …, n}, we call Qσ(1), …, Qσ(n) an ECS 

of x. As is easily seen from the definitions, there can be 

two or more EECS's of each node v of each t"(x), and 

there can be two or more ECS's of x. Let Q1 and Q2 be 

any two EECS's. If the following condition (B) is 

satisfied, we say Q1 and Q2 are equivalent and write Q1 

≡Q2: 

(B) Let Q1 = [((il1 , i21, i31), (q1, α1, j1)) …((iln , i2n, i3n), 

(qn, αn, jn)) P1 …PS], Q2= [((i’l1 , i’21, i’31), (q’1, α’1, j’1)) 

…((i’ln’ , i’2n’, i’3n’), (q’n’, α’n’, j’n’)) P’1 …P’S’]. Then n 

= n', s = s', and ((ilk , i2k, i3k), (qk, αk, jk))= ((i’lk , i’2k, 

i’3k), (q’k, α’k, j’k)) for each k (1 ≤ k ≤ n), and there 

exists a permutation σ : {1, …, s} →{1, …, s} such that 

Pi ≡P’σ(i) for each i(1 ≤i ≤s), where n, s ≥0, and ((il , i2, 

i3), (q, α, j))'s and ((i’l , i’2, i’3), (q’, α’, j’))'s are pairs 

(coordinates along the fourth axis, storage state), and 

further P, P' are EECS's. 

Let Q = Q1 …Qn, Q’ = Q’1 …Q’n be any two ECS's. 

We say that Q and Q' are equivalent if n = n' and there 

exists a permutation σ : {1, …, n} →{1, …, n } such 

that Qi≡Q’σ(i)  for each i (1 ≤i ≤n). [As is easily seen 

from the definition, any two ECS's of x are equivalent 

for any x in V(m).] For any ECS Q, the length of Q is the 

number of pairs (coordinates along the fourth axis, 

storage state) in Q, and is denoted by  | Q |. For each 

m≥1, let E(m) = {Q | Q is an ECS of x for some x in 

V(m)}. Then, the following two propositions must hold :  

[Proposition 1] | E(m) | = Z(m)dZ(m), where Z(m) = (2m 

+ 2)3rL(2m)sL(2m), r and s are the numbers of states (of 

the finite control) and storage-tape symbols of M, and d 

is a positive constant. 

[Proposition 2] Let x and y be any two different tapes in 

V(m), and let Qx and Qy be any ECS's of x and y, 

respectively. Then, Qx and Qy are not equivalent. 

Clearly, |V(m) |=28t (t=m4) . Because L(m)=o(log m), it 

follows from Proposition 1 that  |V(m) | > | E(m) | for 

large m. For such a large m, there must exist two 

different tapes x, y ∈V (m) such that some ECS of x and 

some ECS of y are equivalent, which contradicts 

Proposition 2. This completes the proof.     □ 

3. Conclusion 

In this paper, we presented a technique which we can 

show that a four-dimensional language is not accepted 

by any space-bounded alternating Turing machines. It 

will be interesting to investigate infinite space hierarchy 

properties of the classes of sets accepted by 4-ATM's 

with spaces of size smaller than log m. 
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