
© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

A space lower-bound technique for four-dimensional

alternating Turing machines

Makoto Nagatomo, Shinnosuke Yano, Makoto Sakamoto, Satoshi Ikeda and Hiroshi Furutani

Faculty of Engineering, University of Miyazaki,

1-1 Gakuen Kibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan

E-mail: je.suis.makoto@gmail.com, shinchandx@ezweb.ne.jp, sakamoto@cs.miyazaki-u.ac.jp,

bisu@cs.miyazaki-u.ac.jp, furutani@cs.miyazaki-u.ac.jp

Takao Ito, Tsutomu Ito

Institute of Engineering, Hiroshima University, 4-1, Kagamiyama 1-chome

Higashi-Hiroshima, Hiroshima 739-8527, Japan

E-mail: itotakao@horoshima-u.ac.jp, 0va71-2538f211n@ezweb.ne.jp

Yasuo Uchida

Department of Business Administration, Ube National College of Technology, Tokiwadai

Ube, Yamaguchi 755-8555, Japan

E-mail:uchida@ube-k.ac.jp

Tsunehiro Yoshinaga

Department of Computer Science & Electronic Engineering,

National Institute of Technology, Tokuyama College, Gakuendai

Shunan, Yamaguchi 745-8585, Japan

E-mail:yosinaga@tokuyama.ac.jp

Abstract

Alternating Turing machines were introduced in 1981 as a generalization of nondeterministic Turing machines and

as a mechanism to model parallel computation. On the other hand, we have no enough techniques which we can show

that some concrete four-dimensional language is not accepted by any space-bounded four-dimensional alternating

Turing machines. The main purpose of this paper is to present a technique which we can show that some four-

dimensional language is not accepted by any space-bounded four-dimensional alternating Turing machines.

Concretely speaking, we show that the set of all four-dimensional input tapes over {0,l}, which each top half part is

equal to each bottom half part, is not accepted by any L(m) space-bounded four-dimensional alternating Turing

machines for any function L(m) smaller than log m.

Keywords: Alternation, Complexity, Computation Tree, Configuration, Four-Dimension, Turing machine

1. Introduction and Preliminaries

We have no enough techniques which we can show

that some concrete four-dimensional language is not

accepted by any space-bounded four-dimensional

alternating Turing machines [1, 2]. The main purpose of

this paper is to present a technique which we can show

353

Makoto Nagatomo, Shinnosuke Yano, Makoto Sakamoto, Satoshi Ikeda, Hiroshi Furutani, Takao Ito, Tsutomu Ito, Yasuo Uchida, Tsunehiro Yoshinaga

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

that some four-dimensional language is not accepted by

any space-bounded four-dimensional alternating Turing

machines. Concretely speaking, we show that the set of

all four-dimensional input tapes over {0,l}, which each

top half part is equal to each bottom half part, is not

accepted by any L(m) space-bounded four-dimensional

alternating Turing machines for any function L(m) such

that limm→∞[L(m)/log m] = 0. We let each side-length of

each four-dimensional input tape of these automata be

equivalent in order to increase the theoretical interest.

Let Σ be a finite set of symbols. A three-dimensional

tape over Σ is a four-dimensional rectangular array of

elements of Σ. The set of all four-dimensional tapes over

Σ is denoted by Σ（４）. Given a tape x∈Σ（４）, for each

integer j(41  j), we let)(xm j
 be the length of x

along the jth axis. The set of all x with l1(x)=m1,

l2(x)=m2, l3(x)=m3, and l4(x)=m4 denoted by Σ(m
1
,m

2
,m

3
,m

4
).

If 1 ≤ij≤lj(x) for each)41( jj , let x(i1,i2,i3,i4) denote

the symbol in x with coordinates (i1,i2,i3,i4).

Furthermore, we define x[(i1,i2,i3,i4),(i1’,i2’,i3’,i4’)], when

)('1 xlii jjj  for each integer)41( jj , as the four-

dimensional tape y satisfying the following (i) and (ii):

(i) for each j(1≤j≤4), lj(y)=i’j-ij+1;

(ii) for each r1, r2, r3, r4(1≤ r1 ≤ l1(y), 1 ≤ r2 ≤ l2(y),

1≤r3≤l3(y), 1≤r4≤l4(y)), y(r1, r2, r3, r4) = x(r1+i1-1, r2+i2-

1, r3+i3-1, r4+i4-1). (We call x[(i1, i2, i3, i4), (i’1, i’2, i’3,

i’4)] x[(i1, i2, i3, i4), (i’1, i’2, i’3, i’4)]-segment of x.);

A four-dimensional alternating Turing machine (4-

ATM) M is defined by the 7-tuple M = (Q, q0, U, F, Σ, Γ,

δ), where (1) Q is a finite set of states; (2) q0Q is the

initial state; (3) U  Q is the set of universal states; (4)

FQ is the set of accepting states; (5) Σ is a finite input

alphabet (#Σ is the boundary symbol); (6) Γ is a finite

storage-tape alphabet (BΓ is the boundary symbol),

and (7) δ (Q x (Σ∪{#}) x Γ) x (Q x (Γ - {B}) x {east,

west, south, north, up, down, past, future, no move} x

{right, left, no move}) is the next-move relation.

A state q in Q - U is said to be existential. The machine

M has a read-only four-dimensional input tape with

boundary symbols # 's and one semi-infinite storage tape,

initially blank. Of course, M has a finite control, an input

head, and a storage-tape head. A position is assigned to

each cell of the read-only input tape and to each cell of

the storage tape. A step of M consists of reading one

symbol from each tape, writing a symbol on the storage

tape, moving the input and storage heads in specified

directions, and entering a new state, in accordance with

the next-move relation δ. Note that the machine cannot

write the blank symbol. If the input head falls off the

input tape, or if the storage head falls off the storage tape

(by moving left), then the machine M can make no further

move.

 A configuration of a 4-ATM M = (Q, q0, U, F, Σ, Γ, δ)

is a pair of an element of Σ（４）and an element of CM =

(NU{0})3 x SM , where SM =Q x (Γ-{B})* x N and N

denotes the set of all the positive integers. The first

component x of a configuration c = (x, ((il, i2, i3, i4), (q,

α, j))) represents the input to M. The second component

(il, i2, i3, i4) of c represents the input-head position. The

third component (q, α, j) of c represents the state of the

finite control, nonblank contents of the storage tape, and

the storage-head position. An element of CM is called a

semi-configuration of M and an element of SM is called

a storage state of M. If q is the state associated with

configuration c, then c is said to be a universal

(existential, accepting) configuration if q is a universal

(existential, accepting) state. The initial configuration of

M on input x is IM (x) = (x, (1, 1, 1, 1), (q0, λ, 1)), where

λ is the null string.

Given M = (Q, q0, U, F, Σ, Γ, δ) , we write c ┠M c'

and say c' is a successor of c if configuration c' follows

from configuration c in one step of M, according to the

transition rules δ. The relation ┠M is not necessarily

single-valued, because δ is not. A computation path of

M on x is a sequence. C0 ┠M Cl ┠M …┠M Cn (n ≥ 0),

where C0 = IM (x). A computation tree of M is a finite,

nonempty labeled tree with the following properties: (1)

Each node v of the tree is labeled with a configuration

l(v), (2) If v is an internal node (a nonleaf) of the tree,

l(v) is universal and {c | l(v)┠M c} = {cl,…, ck}, then v

has exactly k children v1,…,vk such that l(vi) =ci (1≤ i ≤

k), and (3) If v is an internal node of the tree and l(v) is

existential, then v has exactly one child u such that l(v)

┠M l(u). A computation tree of M on input x is a

computation tree of M whose root is labeled with IM (x).

An accepting computation tree of M on x is a

computation tree of M on x whose leaves are all labeled

with accepting configurations. We say that M accepts x

if there is an accepting computation tree of M on input

x. Define T(M) = {x ∈Σ（４）| M accepts x}.

In this paper, we shall concentrate on investigating the

properties of 4-ATM's whose each side-length of each

four-dimensional input tape is equivalent and whose

storage tapes are bounded (in length) to use.

354

A space lower-bound technique

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

Let L(m) : N → N be a function with one variable m.

With each 4-ATM M we associate a space complexity

function SPACE that takes configurations to natural

numbers. That is, for each configuration c = (x, ((il, i2,

i3, i4), (q, α, j))), let SPACE(c) =|α|. We say that M is

L(m) space-bounded if for all m ≥ 1 and for each x with

l1(x) = l2(x) = l3(x) = l4(x) = m, if x is accepted by M,

then there is an accepting computation tree of M on

input x such that for each node v of the tree,

SPACE(l(v)) ≤ L(m). We denote an L (m) space-

bounded 4-ATM by 4-ATM (L (m)). L [4-ATM (L (m))]

= {T | T= T (M) for some 4-ATM (L (m)) M}.

2. Main Result

[Theorem 1] Let T={x ∈{0, 1}(4) |∃m ≤ 1 [l1(x) = l2(x)

= l3(x) = l4(x) =2m & x[(l, 1, 1, 1), (2m, 2m, 2m, m)] =

x[(l, 1, 1, m + 1), (2m, 2m, 2m, 2m)]]). Then, T L [4-

ATM (L (m))] for any L (m) = o (log m).

(Proof) Suppose that there exists a 4-ATM (L (m)) M

accepting T, where L (m) = o (log m). We assume,

without loss of generality, that M moves a storage-tape

head after changing its state and writing a new symbol

on the storage tape, and moves an input head finally.

For each m ≤ 1, let V (m) = {x ∈T | l1(x) = l2(x) = l3(x)

= l4(x) =2m}. For each x in V (m), let t(x) be one fixed

accepting computation tree of M on x such that each

node v of the tree satisfies SPACE(l(v)) ≤ L(2m), where

for each node v of t(x), l(v) represents the label of v.

Without loss of generality, we assume that for any t(x);

 (i) any two different nodes on any path of t(x) are

labeled by different configurations, and,

(ii) if any different nodes of t(x) have the same label,

then the subtrees [of t(x)] with these nodes as the roots

are identical.

For each x in V(m), let t(m), which we call the reduced

accepting computation tree of M on x, be a tree obtained

from t(x) by the following procedure [for each node v of

t(x), we denote by d(v) the length of the path from the

root of t(x) to v (i.e., the number of edges from the root

of t(x) to v)]:

Begin

 1. Tr = t(x)

 2. i = 1

 3. Let N (i) ≜ {v | v is node of Tr and d(v) ≤i}. Divide

N(i) as follows: N(i) = P(l) ⋃ P(2) ⋃…⋃ P(ji), where: (1)

if ia = ib(l≤ ia, ib ≤ ji), then P(ia) ∩ P(ib) = φ, and (2)

for each ia(1 ≤ ia ≤ ji) and for each va, Vb ∈ P(ia), l(va)

=l(vb) (i.e., the labels of va and vb are identical). For each

ia (1 ≤ia ≤ ji), let dis(ia) = min{d(v) | v ∈ P(ia)} and let

n(ia) be the leftmost node among those nodes v in P(ia)

such that d(v) = dis(ia). Further, let N'(i) = N(i) - {n(l),

n(2), …, n(ji)}. By removing from Tr all the subtrees

whose roots are included in N'(i), we make the new Tr.

4. If the height of Tr (i.e., the length of the longest

path of Tr) is less than or equal to i, then we let t'(x)=

Tr. Otherwise, we let i = i + 1 and go to step 3.

end

[Example 1] Let x ∈ V(m) and t(x) be a tree. Here,

suppose that nodes A and D have the same label, nodes

B and C have the same label, and other nodes each have

different labels. [From the preceding assumption (ii)

concerning t(x), identical.] Then, t'(x) is a tree. That is,

t'(x) is obtained from t(x) by moving the subtree with

nodes C and D as the roots from t(x).

 It is easily seen that for each x in V (m), all the nodes of

t'(x) have labels different from one another, and the set

of all the paths from root of t'(x) to the leaves of t'(x)

represents necessary and sufficient accepting

computations of M on x. From t'(x), we now define an

extended crossing sequence (ECS) at the boundary

between the top and bottom halves of x. The concept of

ECS was first introduced in [3]. We relabel each node v

of t'(x), as follows. (We denote this new labeling by l'.)

For each node v of t'(x), let f(v) denote the father node

of v. Then, for each node v of t'(x), where x ∈ V(m), let

if, for some storage states (q, α, j) and (q', α', j'),

(i) l(f(v)) = (x, (il , i2, i3, m), (q', α', j')) and

l(v) = (x, (il , i2, i3, m+1), (q, α, j)) , or

(ii) l(f(v)) = (x, (il , i2, i3, m+1), (q', α', j')) and

l(v) = (x, (il , i2, i3, m), (q, α, j)) , then

l'(v) = ((il , i2, i3), (q, α, j))

else

l'(v) = *.

That is, if the movement of M from f (v) to v represents

the action of crossing the boundary between the top and

bottom halves of x, then v is newly labeled by (il , i2, i3),

(q, α, j)), where (q, α, j) is the storage state component

of l(v). Otherwise, v is newly labeled by *. From the

newly labeled t'(x), we extract those nodes v such that

l'(rn) = *, and by using these nodes, we construct a tree

t"(x) satisfying the following condition:

(A) For any node v of t"(x), nodes v1, v2, …,vS are

children of v if and only if v1, v2, …,vS are descendants

of v in t'(x) and l'(u) = * for each node u on the path

355

Makoto Nagatomo, Shinnosuke Yano, Makoto Sakamoto, Satoshi Ikeda, Hiroshi Furutani, Takao Ito, Tsutomu Ito, Yasuo Uchida, Tsunehiro Yoshinaga

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

from v to each vi. In general, there can be two or more

such trees t"(x). Let these trees be t1"(x),…, tn"(x). For

each node v of each ti"(x) (l ≤ i ≤ n), we now define an

element of ECS (EECS) inductively as follows: Let

l'(v) = ((il , i2, i3), (q, α, j)).

(1) If v is a leaf, then [((il , i2, i3), (q, α, j))] is an EECS

of v.

(2) If v has only one child v1 and Q1 = [((il1 , i21, i31),

(q1, α1, j1))P] is an EECS of v1, then [((il , i2, i3), (q, α, j))

((il1 , i21, i31), (q1, α1, j1))P] is an EECS of v.

(3) If v has d(≥2) children v1, …, vd and Q1, …, Qd are

EECS's of v1, …, vd, respectively, then [((il , i2, i3), (q, α,

j)) Qσ(1)…Qσ(d)] is an EECS of v for any permutation σ :

{1, …, d}→{1, …, d}.

(4) An EECS of v is defined only by the preceding

statements (1), (2), and (3).

Now, let Q1, …, Qn be EECS's of the root nodes of

t1"(x),…, tn"(x), respectively. Then, for any permutation

σ : {1, …, n}→{l, …, n}, we call Qσ(1), …, Qσ(n) an ECS

of x. As is easily seen from the definitions, there can be

two or more EECS's of each node v of each t"(x), and

there can be two or more ECS's of x. Let Q1 and Q2 be

any two EECS's. If the following condition (B) is

satisfied, we say Q1 and Q2 are equivalent and write Q1

≡Q2:

(B) Let Q1 = [((il1 , i21, i31), (q1, α1, j1)) …((iln , i2n, i3n),

(qn, αn, jn)) P1 …PS], Q2= [((i’l1 , i’21, i’31), (q’1, α’1, j’1))

…((i’ln’ , i’2n’, i’3n’), (q’n’, α’n’, j’n’)) P’1 …P’S’]. Then n

= n', s = s', and ((ilk , i2k, i3k), (qk, αk, jk))= ((i’lk , i’2k,

i’3k), (q’k, α’k, j’k)) for each k (1 ≤ k ≤ n), and there

exists a permutation σ : {1, …, s} →{1, …, s} such that

Pi ≡P’σ(i) for each i(1 ≤i ≤s), where n, s ≥0, and ((il , i2,

i3), (q, α, j))'s and ((i’l , i’2, i’3), (q’, α’, j’))'s are pairs

(coordinates along the fourth axis, storage state), and

further P, P' are EECS's.

Let Q = Q1 …Qn, Q’ = Q’1 …Q’n be any two ECS's.

We say that Q and Q' are equivalent if n = n' and there

exists a permutation σ : {1, …, n} →{1, …, n } such

that Qi≡Q’σ(i) for each i (1 ≤i ≤n). [As is easily seen

from the definition, any two ECS's of x are equivalent

for any x in V(m).] For any ECS Q, the length of Q is the

number of pairs (coordinates along the fourth axis,

storage state) in Q, and is denoted by | Q |. For each

m≥1, let E(m) = {Q | Q is an ECS of x for some x in

V(m)}. Then, the following two propositions must hold :

[Proposition 1] | E(m) | = Z(m)dZ(m), where Z(m) = (2m

+ 2)3rL(2m)sL(2m), r and s are the numbers of states (of

the finite control) and storage-tape symbols of M, and d

is a positive constant.

[Proposition 2] Let x and y be any two different tapes in

V(m), and let Qx and Qy be any ECS's of x and y,

respectively. Then, Qx and Qy are not equivalent.

Clearly, |V(m) |=28t (t=m4) . Because L(m)=o(log m), it

follows from Proposition 1 that |V(m) | > | E(m) | for

large m. For such a large m, there must exist two

different tapes x, y ∈V (m) such that some ECS of x and

some ECS of y are equivalent, which contradicts

Proposition 2. This completes the proof. □

3. Conclusion

In this paper, we presented a technique which we can

show that a four-dimensional language is not accepted

by any space-bounded alternating Turing machines. It

will be interesting to investigate infinite space hierarchy

properties of the classes of sets accepted by 4-ATM's

with spaces of size smaller than log m.

References

[1] A.K.Chandra, D.C.kozen, and L.J.Stockmeyer:

Alternation, J.ACM, Vol. 28, No. 1 pp.114-133 (1981).

[2] M.Sakamoto, K.Inoue, and I.Takanami: A note on

three-dimensional alternating Turing machines with

space smaller than log m, Inform. Sci., ELSEVIER, Vol.

72, pp. 225-249 (1993).

[3] H.Yamamoto and S.Noguchi: Time-and-leaf bound-

ed 1-tape alternating Turing machines, The Trans. of

IECE, J68-D, pp.1719-1726 (1985).

356

