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Abstract 

We think that recently, due to the advances in many application areas such as motion image processing, computer 

animation, and so on, it is very useful for analyzing computational complexity of multi-dimensional information 

processing to explicate the properties of four-dimensional automata, i.e., three-dimensional automata with the time 

axis. As far as we know, there is no investigation about four-dimensional automata. Then, in 2002, we first introduced 

four-dimensional finite automata in the world. In 2003, we investigated four-dimensional alternating Turing machines. 

In 2015, we show the sufficient spaces for four-dimensional Turing machines to simulate four-dimensional one-

marker automata. In this paper, we continue the investigations, and deal with the necessary spaces for four-

dimensional Turing machines to simulate four-dimensional one-marker automata. 

Keywords: computational complexity, finite automaton, lower bounds, marker, simulation, Turing machine. 

1. Introduction 

An improvement of picture recognizability of the finite 

automaton is the reason why the marker automaton was 

introduced. That is, a two-dimensional one-marker 

automaton can recognize connected pictures. This 

automaton has been widely investigated in the two- or 

three-dimensional case [2]. A multi-marker automaton is 

a finite automaton which keeps marks as ‘pebbles’ in the 

finite control, and cannot rewrite any input symbols but 

can make marks on its input with the restriction that only 

a bounded number of these marks can exist at any given 

time[1]. 

 As is well known among the researchers of automata 

theory, one-dimensional one-marker automata are 

equivalent to ordinary finite state automata. In other 

words, there is no need of working space usage for one-

way Turing machines to simulate one-marker automata, 

as well as finite state automata. 
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  In the two-dimensional case, the following facts are 

known : the necessary and sufficient space for three-way 

two-dimensional deterministic Turing machines TR2-

DTM’s to simulate two-dimensional deterministic 

(nondeterministic) finite automata 2-DFA’s (2-NFA’s) is 

mlogm (m2) and the corresponding space for three-way 

two-dimensional nondeterministic Turing machines 

TR2-NTM’s is m (m), whereas the necessary and 

sufficient space for three-way two-dimensional 

deterministic Turing machines TR2-DTM’s to simulate 

two-dimensional deterministic (nondeterministic) one-

marker automata 2-DMA1’s (2-NMA1’s) is 2mlogm (2𝑚2
) 

and the corresponding space for TR2-NTM’s is mlogm 

(m2), where m is the number of columns of two-

dimensional rectangular input tapes. 

In the three-dimensional case, the following facts are 

known : the necessary and sufficient space for five-way 

three-dimensional deterministic Turing machines FV3-

DTM’s to simulate three-dimensional deterministic 

(nondeterministic) finite automata 3-DFA’s (3-NFA’s) is 

m2logm (m3) and the corresponding space for five-way 

three-dimensional nondeterministic Turing machines 

FV3-NTM’s is m2 (m2), whereas the necessary and 

sufficient space for five-way three-dimensional 

deterministic Turing machines FV3-DTM’s to simulate 

three-dimensional deterministic (nondeterministic) one-

marker automata 3-DMA1’s (3-NMA1’s) is 2lmloglm (2𝑙2𝑚2
) 

and the corresponding space for FV3-NTM’s is lmloglm 

(l2m2), where l(m) is the number of rows (columns) on 

each plane of three-dimensional rectangular input tapes.  

In the four-dimensional case, we showed the sufficient 

spaces for four-dimensional Turing machines to simulate 

four-dimensional one-marker automata [3]. In this paper, 

we continue the investigations, and deal with the 

necessary spaces for four-dimensional Turing machines 

to simulate four-dimensional one-marker automata. 

2. Preliminaries 

An ordinary finite automaton cannot rewrite any 

symbols on input tape, but a marker automaton can make 

a mark on the input tape. We can think of the mark as a 

‘pebble’ that M puts down in a specified position. If M 

has already put down the mark, and wants to put it down 

elsewhere, M must first go to the position of the mark and 

pick it up. Formally, we define it as follows. 

Definition 2.1. A four-dimensional nondeterministic 

one-marker automaton (4-NMA1) is defined by the 6-

tuple M = (Q, q0, F, Σ, { +, - }, δ), where 

(1) Q is a finite set of states ; 

(2) q0 ∈ Q is the initial state ; 

(3) F ⊆ Q is the set of accepting states ; 

(4) Σ is a finite input alphabet (# ∉ Σ is the boundary 

symbol); 

(5) {+,－} is the pair of signs of presence and absence 

of the marker ; and 

(6) δ : (𝑄 × {+, −}) ×  ((Σ ∪ {#}) × {+, −})  ↦ × 

2𝑄×{+,−} ×  (( Σ ∪ {#} ) × {+, −} )  × {east, west,

south, north, up, down, future, past, no move} is the 

next-move function, satisfying the following : For any q, 

q’∈Q, any a, a’ ∈ Σ, any u, u’, v, v’∈ {+, −}, and any d∈

{east, west, south, north, up, down, future, past,

no move}, if ((q’, u’), (a’, v’),d) ∈ 𝛿((q,v), (a,v)) then 

𝑎 = 𝑎′ and (𝑢, 𝑣, 𝑢′, 𝑣′) ∈ {(+, −, +, −), 

 (+, −, −, +), (−, +, −, +), (−, +, +, −), (−, −, −, −)}. 

  We call a pair (𝑞, 𝑢)  in 𝑄 × {+, −}  an extended 

state, representing the situation that M holds or does not 

hold the marker in the finite control according to the sign 

𝑢 =  + or 𝑢 =  −, respectively. A pair (𝑎, 𝑣) in Σ ×

{+, −} represents an input tape cell on which the marker 

exists or does not exist according to the sign 𝑢 =  + or 

𝑢 =  −, respectively. 

  Therefore, the restrictions on 𝛿 imply the following 

conditions. (i) When holding the marker, M can put it 

down or keep on holding. (ii) When not holding the 

marker, and ① if the marker exists on the current cell, 

M can pick it up or leave it there, or ② if the marker 

does not exist on the current cell, M cannot create a new 

marker any more. 

Definition 2.2. Let Σ be the input alphabet of 4-NMA1 

M. An extended input tape �̃�  of M is any four-

dimensional tape over Σ × {+, −}  such that for some 

𝑥 ∈ Σ(4), 

(i) for each 𝑗(1 ≤ 𝑗 ≤ 4), 𝑙𝑗(�̃�) = 𝑙𝑗(𝑥), 

(ii) for each 𝑖1(1 ≤ 𝑖1 ≤ 𝑙1(�̃�)), 𝑖2(1 ≤ 𝑖2 ≤ 𝑙2(�̃�)), 

𝑖3(1 ≤ 𝑖3 ≤ 𝑙3(�̃�)) , and  𝑖4(1 ≤ 𝑖4 ≤ 𝑙4(�̃�)) , �̃�(𝑖1, 𝑖2,

𝑖3, 𝑖4)=𝑥((𝑖1, 𝑖2, 𝑖3, 𝑖4), 𝑢) for some 𝑢 ∈ {+, −}. 

Definition 2.3. A configuration of 4-NMA1 M = (Q, q0, F, 

Σ, { +, - }, δ) is a pair of an element of ((Σ ∪ {#}) ×

{+, −})
(4)

 and an element of 𝐶𝑀 = (𝐍 ∪ {0})(4) ×

(𝑄 × {+, −}).  The first component of a configuration 

𝑐 = (�̃�, ((𝑖1, 𝑖2, 𝑖3, 𝑖4), (𝑞, 𝑢)))  represents the extended 

input tape of M. The second component (𝑖1, 𝑖2, 𝑖3, 𝑖4) of 
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𝑐  represents the input head position. The third 

component (𝑞, 𝑢) of 𝑐  represents the extended state. 

An element of 𝐶𝑀 is called a semi-configuration of M. If 

q is the state associated with configuration c, then c is 

said to be an accepting configuration if q is an accepting 

state. The initial configuration of M on input x is 

𝐼𝑀(𝑥) = (𝑥−, ((1,1,1,1), (𝑞0, +))),  where 𝑥−  is the 

special extended input tape of M such that 

𝑥−(𝑖1, 𝑖2, 𝑖3, 𝑖4)  = (𝑥(𝑖1, 𝑖2, 𝑖3, 𝑖4), −)  for each 

𝑖1, 𝑖2, 𝑖3, 𝑖4 (1 ≤ 𝑖1 ≤ 𝑙1(𝑥−), 1 ≤ 𝑖2 ≤ 𝑙2(𝑥−), 1 ≤ 𝑖3 ≤

𝑙3(𝑥−), 1 ≤ 𝑖4 ≤ 𝑙4(𝑥−)). If M moves deterministically, 

we call M a four-dimensional deterministic one-marker 

automaton (4-DMA1). 

Definition 2.4. Given a 4-NMA1
 M = (Q, q0, F, Σ, {+, -}, 

δ), we write 𝑐├ 𝑀 𝑐′ and say 𝑐′ is a successor of c if 

configuration 𝑐′ follows from configuration 𝑐  in one 

step of M, according to the transition rules 𝛿 . ├ 𝑀
∗  

denotes the reflexive transitive closure of ├ 𝑀 . The 

relation ├ 𝑀 is not necessarily single-valued, because 𝛿 

is not. A computation path of M on 𝑥  is a sequence 

𝑐0├ 𝑀 𝑐1├ 𝑀 … ├ 𝑀 𝑐𝑛(𝑛 ≥ 0) , where 𝑐0 = 𝐼𝑀(𝑥) . An 

accepting computation path of M on x is a computation 

path of M on x which ends in an accepting configuration. 

We say that M accepts x if there is an accepting 

computation path of M on input x. 

Let L(l, m, n) : N3 ↦ R be a function. A seven-way 

four-dimensional Turing machine M is said to be L(l, m, 

n) space-bounded if for each l, m, n≥ 1 and for each x 

with l1(x) = l, l2(x) = m, and l3(x) = n, if x is accepted by 

M, then there is an accepting computation path of M on x 

in which M uses no more than L(l, m, n) cells of the 

storage tape. We denote an L(l, m, n) space-bounded SV4-

DTM (SV4-NTM) by SV4-DTM(L(l, m, n)) (SV4-

NTM(L(l, m, n))). 

Definition 2.5. For any four-dimensional automaton M 

with input alphabet Σ , define T(M) = {x  ∈ Σ(4) | M 

accepts x}. Furthermore, for each X ∈ {D,N}, define 

L[4-XMA1] = {T | T = T(M) for some 4-XMA1}, 

L[SV4-XTM(S(l,m,n))] = {T | T = T(M) for some SV4-

XTM(S(l,m,n)) M}, and 

L[SV4-XTM(L(l,m))] = {T | T = T(M) for some SV4-

XTM((l,m)) M}. 

3. Necessary spaces 

In this section, we investigate the necessary spaces (i.e., 

lower bounds) for seven-way Turing machines to 

simulate one-marker automata. 

Definition 3.1. Let x be in Σ(4)  (Σ  is a finite set of 

symbols) and l1(x)=l, l2(x)=m, l3(x)=n. For each j 

(1 ≤ j ≤ Q[l4(x)/lmn]) (where Q[l4(x)/lmn] denotes the 

quotient when l4(x) is divided by lmn), 

x[(1, 1, 1, (j-1)lmn+1), (l, m, n, jlmn)] 

is called the jth (l, m, n)-block of x. We say that the tape 

x has exactly k (l, m, n)-blocks if l4(x)=klmn, where k is 

a positive integer. 

Definition 3.2. Let (l1, m1, n1), (l2, m2, n2), … , be a 

sequence of points (i.e., pairs of three natural numbers), 

and let {(li, mi, ni)} denote this sequence. We call a 

sequence {(l1, m1, n1)} the regular sequence of points if 

(li, mi, ni)≠(lj, mj, nj) for i ≠ j. 

Lemma 3.1. Let T1={x ∈ {0, 1}(4) |∃ l ≥ 1, ∃m ≥ 1, ∃

n≥1[l1(x)=l and l2(x)=m and l3(x)=n and (each plane of x 

contains exactly one ‘1’) and ∃d≥2 [(x has exactly d (l, 

m, n)-blocks, i.e., l4(x)=dlmn) and (the last (l, m, n)-block 

is equal to some other (l, m, n)-block)]]}. Then,  

(1) T1 ∈L[4-DMA1], but 

(2) T1L[SV4-DTM(2L(l, m, n))] (so, T1L[SV4-NTM(L(l,  

m, n))]) for any function L(l, m, n) such that 

limi→∞[L(li, mi, ni)/(liminiloglimini)]=0. for some 

regular sequence of points {(li, mi, ni)}. 

Proof: (1): We construct a 4-DMA1 M accepting T1 as 

follows. Given an input x with l1(x) = l, l2(x) = m, and 

l3(x) = n, M first checks, by sweeping plane by plane, that 

each plane of x contains exactly one ‘1’, and M then 

checks, by making a zigzag of 45°-direction from top 

plane to bottom plane, that x has exactly d (l, m, n)-blocks 

for some integer d≥2. After that, M tests by utilizing its 

own marker whether the last (l, m, n)-block is identical to 

some other (l, m, n)-block. M then finds the ‘1’ position 

on the plane and move up vertically from this position. In 

this course, each time M meets a ‘1’ position, it checks 

whether or not there is a marker on the plane (containing 

the ‘1’ position). 

(i):If there is a marker on the plane, M knows that the 

kth planes of the hth and the last (l, m, n)-blocks are 

identical, and so M then tries to check whether the next 

(k+1)th planes of the hth and the last (l, m, n)-blocks are 

identical. 

(ii):If there is no marker on the plane, M goes back to 

the ‘1’ position on the plane, and vertically moves up 

again to find the next ‘1’ position. 

In this case, if M eventually encounters the top boundary, 

M knows that the kth planes of the hth and the last (l, m, 

n)-blocks are different (thus, the hth (l, m, n)-block is not 

347

http://ja.wikipedia.org/wiki/%E7%9F%A2%E5%8D%B0


Makoto Nagatomo, Shinnosuke Yano, Makoto Sakamoto, Satoshi Ikeda, Hiroshi Furutani, Takao Ito and Tsutomu Ito, Yasuo Uchida, Tsunehiro 

Yoshinaga 

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan 

identical to the last (l, m, n)-block), and so M then tries to 

check whether the next (h+1)th (l, m, n)-block is identical 

to the last (l, m, n)-block. 

 In this way, M enters an accepting state just when it 

finds out some (l, m, n)-block, each of whose planes is 

identical to the corresponding plane of the last (l, m, n)-

block. It will be obvious that T(M)= T1. 

(2):Suppose to the contrary that there exists an SV4-

DTM(2L(l, m, n)) M accepting T1, where L(l, m, n) is a 

function such that 

limi→∞[L(li, mi, ni)/(liminiloglimini)]=0. 
For some regular sequence of points {(li, mi, ni)}. Let s 

and t be the numbers of states in the finite control and 

storage tape symbols of M, respectively. We assume 

without loss of generality that if M accepts an input, then 

M enters an accepting state on the bottom boundary. For 

each l≥1, m≥1, n≥1, let  

V(l, m, n)= {x∈T1 |l1(x)=l and l2(x)=m and l3(x)=n and (x 

has exactly ((lmn)lmn+1) (l, m, n)-blocks)}. For each 

x∈V(l, m, n), let B(x)={b∈{0, 1}(4) |∃h(1≤h≤(lmn)lmn) [b 

is the hth (l, m, n)-block of x] }, and let S(l, m, n)= {B(x) 

| x∈ 𝑉(l, m, n)}. Note that for each x∈ 𝑉(l, m, n), there is 

a sequence of configurations of M which leads M to an 

accepting state. Let conf(x) be the semi-configuration just 

after M leaves the second-to-last (l, m, n)-block of x. Then, 

we get following proposition. 

 

Proposition 3.1. For any two tapes x, y∈V(l, m, n), if B(x) 

≠ B(y), then conf(x) ≠ conf(y). 

Proof of Lemma 3.1(continued): There are at most 

E (l, m, n)=(l+2)(m+2)(n+2)s2L(l, m, n)t2L(l, m, n) 

different semi-configurations of M just when M enters the 

last (l, m, n)-block of tapes in V(l, m, n). On the other 

hand, 

|S(l, m, n)|=2r-1 (r=(lmn)lmn). 

Thus, from the assumption concerning the function L(l, 

m, n), it follows that there exists a point (li, mi, ni) such 

that |S(li, mi, ni)|＞E(li, mi, ni). For such (li, mi, ni), there 

exist two tapes x, y in V(li, mi, ni) such that B(x) ≠ B(y) 

and conf(x) ≠conf(y). This contradicts Proposition 3.1. 

This completes the proof of (2).                 □ 

 

 From Lemma 3.1, we can conclude as follows. 

Theorem 3.1. To simulate 4-DMA1’s, 

(1) SV4-NTM’s require Ω(lmnloglmn) space, and 

(2) SV4-DTM’s require 2Ω(lmnloglmn) space. 

 

 By using the same technique as in the proof of 

Theorem 3.1, we can get as follows. 

Theorem 3.2. To simulate 4-NMA1’s, 

(1) SV4-NTM’s require Ω(l2m2n2) space, and 

(2) SV4-DTM’s require 2Ω(l2m2n2) space. 

4. Conclusion 

In this paper, we showed the necessary spaces for four-

dimensional Turing machines to simulate four-

dimensional one-marker automata. It will be interesting 

to investigate how much space is necessary and sufficient 

for seven-way four-dimensional deterministic or 

nondeterministic Turing machines to simulate four-

dimensional ‘alternating’ one-marker automata. 
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