

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

Necessary spaces for seven-way four-dimensional Turing machines

to simulate four-dimensional one-marker automata

Makoto Nagatomo, Shinnosuke Yano, Makoto Sakamoto, Satoshi Ikeda, and Hiroshi Furutani

Faculty of Engineering, University of Miyazaki,

1-1 Gakuen Kibanadai Nishi, Miyazaki, Miyazaki 889-2192, Japan

E-mail: je.suis.makoto@gmail.com, shinchandx@ezweb.ne.jp, sakamoto@cs.miyazaki-u.ac.jp,

bisu@cs.miyazaki-u.ac.jp, furutani@cs.miyazaki-u.ac.jp

Takao Ito and Tsutomu Ito

Institute of Engineering, Hiroshima University, 4-1, Kagamiyama 1-chome

Higashi-Hiroshima, Hiroshima 739-8527, Japan

E-mail: itotakao@horoshima-u.ac.jp, 0va71-2538f211n@ezweb.ne.jp

Yasuo Uchida

Department of Business Administration, Ube National College of Technology, Tokiwadai

Ube, Yamaguchi 755-8555, Japan

E-mail:uchida@ube-k.ac.jp

Tsunehiro Yoshinaga

Department of Computer Science & Electronic Engineering,

National Institute of Technology, Tokuyama College, Gakuendai

Shunan, Yamaguchi 745-8585, Japan

E-mail:yosinaga@tokuyama.ac.jp

Abstract

We think that recently, due to the advances in many application areas such as motion image processing, computer

animation, and so on, it is very useful for analyzing computational complexity of multi-dimensional information

processing to explicate the properties of four-dimensional automata, i.e., three-dimensional automata with the time

axis. As far as we know, there is no investigation about four-dimensional automata. Then, in 2002, we first introduced

four-dimensional finite automata in the world. In 2003, we investigated four-dimensional alternating Turing machines.

In 2015, we show the sufficient spaces for four-dimensional Turing machines to simulate four-dimensional one-

marker automata. In this paper, we continue the investigations, and deal with the necessary spaces for four-

dimensional Turing machines to simulate four-dimensional one-marker automata.

Keywords: computational complexity, finite automaton, lower bounds, marker, simulation, Turing machine.

1. Introduction

An improvement of picture recognizability of the finite

automaton is the reason why the marker automaton was

introduced. That is, a two-dimensional one-marker

automaton can recognize connected pictures. This

automaton has been widely investigated in the two- or

three-dimensional case [2]. A multi-marker automaton is

a finite automaton which keeps marks as ‘pebbles’ in the

finite control, and cannot rewrite any input symbols but

can make marks on its input with the restriction that only

a bounded number of these marks can exist at any given

time[1].

 As is well known among the researchers of automata

theory, one-dimensional one-marker automata are

equivalent to ordinary finite state automata. In other

words, there is no need of working space usage for one-

way Turing machines to simulate one-marker automata,

as well as finite state automata.

345

Makoto Nagatomo, Shinnosuke Yano, Makoto Sakamoto, Satoshi Ikeda, Hiroshi Furutani, Takao Ito and Tsutomu Ito, Yasuo Uchida, Tsunehiro

Yoshinaga

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

 In the two-dimensional case, the following facts are

known : the necessary and sufficient space for three-way

two-dimensional deterministic Turing machines TR2-

DTM’s to simulate two-dimensional deterministic

(nondeterministic) finite automata 2-DFA’s (2-NFA’s) is

mlogm (m2) and the corresponding space for three-way

two-dimensional nondeterministic Turing machines

TR2-NTM’s is m (m), whereas the necessary and

sufficient space for three-way two-dimensional

deterministic Turing machines TR2-DTM’s to simulate

two-dimensional deterministic (nondeterministic) one-

marker automata 2-DMA1’s (2-NMA1’s) is 2mlogm (2𝑚2
)

and the corresponding space for TR2-NTM’s is mlogm

(m2), where m is the number of columns of two-

dimensional rectangular input tapes.

In the three-dimensional case, the following facts are

known : the necessary and sufficient space for five-way

three-dimensional deterministic Turing machines FV3-

DTM’s to simulate three-dimensional deterministic

(nondeterministic) finite automata 3-DFA’s (3-NFA’s) is

m2logm (m3) and the corresponding space for five-way

three-dimensional nondeterministic Turing machines

FV3-NTM’s is m2 (m2), whereas the necessary and

sufficient space for five-way three-dimensional

deterministic Turing machines FV3-DTM’s to simulate

three-dimensional deterministic (nondeterministic) one-

marker automata 3-DMA1’s (3-NMA1’s) is 2lmloglm (2𝑙2𝑚2
)

and the corresponding space for FV3-NTM’s is lmloglm

(l2m2), where l(m) is the number of rows (columns) on

each plane of three-dimensional rectangular input tapes.

In the four-dimensional case, we showed the sufficient

spaces for four-dimensional Turing machines to simulate

four-dimensional one-marker automata [3]. In this paper,

we continue the investigations, and deal with the

necessary spaces for four-dimensional Turing machines

to simulate four-dimensional one-marker automata.

2. Preliminaries

An ordinary finite automaton cannot rewrite any

symbols on input tape, but a marker automaton can make

a mark on the input tape. We can think of the mark as a

‘pebble’ that M puts down in a specified position. If M

has already put down the mark, and wants to put it down

elsewhere, M must first go to the position of the mark and

pick it up. Formally, we define it as follows.

Definition 2.1. A four-dimensional nondeterministic

one-marker automaton (4-NMA1) is defined by the 6-

tuple M = (Q, q0, F, Σ, { +, - }, δ), where

(1) Q is a finite set of states ;

(2) q0 ∈ Q is the initial state ;

(3) F ⊆ Q is the set of accepting states ;

(4) Σ is a finite input alphabet (# ∉ Σ is the boundary

symbol);

(5) {+,－} is the pair of signs of presence and absence

of the marker ; and

(6) δ : (𝑄 × {+, −}) × ((Σ ∪ {#}) × {+, −}) ↦ ×

2𝑄×{+,−} × ((Σ ∪ {#}) × {+, −}) × {east, west,

south, north, up, down, future, past, no move} is the

next-move function, satisfying the following : For any q,

q’∈Q, any a, a’ ∈ Σ, any u, u’, v, v’∈ {+, −}, and any d∈

{east, west, south, north, up, down, future, past,

no move}, if ((q’, u’), (a’, v’),d) ∈ 𝛿((q,v), (a,v)) then

𝑎 = 𝑎′ and (𝑢, 𝑣, 𝑢′, 𝑣′) ∈ {(+, −, +, −),

 (+, −, −, +), (−, +, −, +), (−, +, +, −), (−, −, −, −)}.

 We call a pair (𝑞, 𝑢) in 𝑄 × {+, −} an extended

state, representing the situation that M holds or does not

hold the marker in the finite control according to the sign

𝑢 = + or 𝑢 = −, respectively. A pair (𝑎, 𝑣) in Σ ×

{+, −} represents an input tape cell on which the marker

exists or does not exist according to the sign 𝑢 = + or

𝑢 = −, respectively.

 Therefore, the restrictions on 𝛿 imply the following

conditions. (i) When holding the marker, M can put it

down or keep on holding. (ii) When not holding the

marker, and ① if the marker exists on the current cell,

M can pick it up or leave it there, or ② if the marker

does not exist on the current cell, M cannot create a new

marker any more.

Definition 2.2. Let Σ be the input alphabet of 4-NMA1

M. An extended input tape �̃� of M is any four-

dimensional tape over Σ × {+, −} such that for some

𝑥 ∈ Σ(4),

(i) for each 𝑗(1 ≤ 𝑗 ≤ 4), 𝑙𝑗(�̃�) = 𝑙𝑗(𝑥),

(ii) for each 𝑖1(1 ≤ 𝑖1 ≤ 𝑙1(�̃�)), 𝑖2(1 ≤ 𝑖2 ≤ 𝑙2(�̃�)),

𝑖3(1 ≤ 𝑖3 ≤ 𝑙3(�̃�)) , and 𝑖4(1 ≤ 𝑖4 ≤ 𝑙4(�̃�)) , �̃�(𝑖1, 𝑖2,

𝑖3, 𝑖4)=𝑥((𝑖1, 𝑖2, 𝑖3, 𝑖4), 𝑢) for some 𝑢 ∈ {+, −}.

Definition 2.3. A configuration of 4-NMA1 M = (Q, q0, F,

Σ, { +, - }, δ) is a pair of an element of ((Σ ∪ {#}) ×

{+, −})
(4)

 and an element of 𝐶𝑀 = (𝐍 ∪ {0})(4) ×

(𝑄 × {+, −}). The first component of a configuration

𝑐 = (�̃�, ((𝑖1, 𝑖2, 𝑖3, 𝑖4), (𝑞, 𝑢))) represents the extended

input tape of M. The second component (𝑖1, 𝑖2, 𝑖3, 𝑖4) of

346

http://ja.wikipedia.org/wiki/%E7%9F%A2%E5%8D%B0

 Necessary spaces for seven-way

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

𝑐 represents the input head position. The third

component (𝑞, 𝑢) of 𝑐 represents the extended state.

An element of 𝐶𝑀 is called a semi-configuration of M. If

q is the state associated with configuration c, then c is

said to be an accepting configuration if q is an accepting

state. The initial configuration of M on input x is

𝐼𝑀(𝑥) = (𝑥−, ((1,1,1,1), (𝑞0, +))), where 𝑥− is the

special extended input tape of M such that

𝑥−(𝑖1, 𝑖2, 𝑖3, 𝑖4) = (𝑥(𝑖1, 𝑖2, 𝑖3, 𝑖4), −) for each

𝑖1, 𝑖2, 𝑖3, 𝑖4 (1 ≤ 𝑖1 ≤ 𝑙1(𝑥−), 1 ≤ 𝑖2 ≤ 𝑙2(𝑥−), 1 ≤ 𝑖3 ≤

𝑙3(𝑥−), 1 ≤ 𝑖4 ≤ 𝑙4(𝑥−)). If M moves deterministically,

we call M a four-dimensional deterministic one-marker

automaton (4-DMA1).

Definition 2.4. Given a 4-NMA1
 M = (Q, q0, F, Σ, {+, -},

δ), we write 𝑐├ 𝑀 𝑐′ and say 𝑐′ is a successor of c if

configuration 𝑐′ follows from configuration 𝑐 in one

step of M, according to the transition rules 𝛿 . ├ 𝑀
∗

denotes the reflexive transitive closure of ├ 𝑀 . The

relation ├ 𝑀 is not necessarily single-valued, because 𝛿

is not. A computation path of M on 𝑥 is a sequence

𝑐0├ 𝑀 𝑐1├ 𝑀 … ├ 𝑀 𝑐𝑛(𝑛 ≥ 0) , where 𝑐0 = 𝐼𝑀(𝑥) . An

accepting computation path of M on x is a computation

path of M on x which ends in an accepting configuration.

We say that M accepts x if there is an accepting

computation path of M on input x.

Let L(l, m, n) : N3 ↦ R be a function. A seven-way

four-dimensional Turing machine M is said to be L(l, m,

n) space-bounded if for each l, m, n≥ 1 and for each x

with l1(x) = l, l2(x) = m, and l3(x) = n, if x is accepted by

M, then there is an accepting computation path of M on x

in which M uses no more than L(l, m, n) cells of the

storage tape. We denote an L(l, m, n) space-bounded SV4-

DTM (SV4-NTM) by SV4-DTM(L(l, m, n)) (SV4-

NTM(L(l, m, n))).

Definition 2.5. For any four-dimensional automaton M

with input alphabet Σ , define T(M) = {x ∈ Σ(4) | M

accepts x}. Furthermore, for each X ∈ {D,N}, define

L[4-XMA1] = {T | T = T(M) for some 4-XMA1},

L[SV4-XTM(S(l,m,n))] = {T | T = T(M) for some SV4-

XTM(S(l,m,n)) M}, and

L[SV4-XTM(L(l,m))] = {T | T = T(M) for some SV4-

XTM((l,m)) M}.

3. Necessary spaces

In this section, we investigate the necessary spaces (i.e.,

lower bounds) for seven-way Turing machines to

simulate one-marker automata.

Definition 3.1. Let x be in Σ(4) (Σ is a finite set of

symbols) and l1(x)=l, l2(x)=m, l3(x)=n. For each j

(1 ≤ j ≤ Q[l4(x)/lmn]) (where Q[l4(x)/lmn] denotes the

quotient when l4(x) is divided by lmn),

x[(1, 1, 1, (j-1)lmn+1), (l, m, n, jlmn)]

is called the jth (l, m, n)-block of x. We say that the tape

x has exactly k (l, m, n)-blocks if l4(x)=klmn, where k is

a positive integer.

Definition 3.2. Let (l1, m1, n1), (l2, m2, n2), … , be a

sequence of points (i.e., pairs of three natural numbers),

and let {(li, mi, ni)} denote this sequence. We call a

sequence {(l1, m1, n1)} the regular sequence of points if

(li, mi, ni)≠(lj, mj, nj) for i ≠ j.

Lemma 3.1. Let T1={x ∈ {0, 1}(4) |∃ l ≥ 1, ∃m ≥ 1, ∃

n≥1[l1(x)=l and l2(x)=m and l3(x)=n and (each plane of x

contains exactly one ‘1’) and ∃d≥2 [(x has exactly d (l,

m, n)-blocks, i.e., l4(x)=dlmn) and (the last (l, m, n)-block

is equal to some other (l, m, n)-block)]]}. Then,

(1) T1 ∈L[4-DMA1], but

(2) T1L[SV4-DTM(2L(l, m, n))] (so, T1L[SV4-NTM(L(l,

m, n))]) for any function L(l, m, n) such that

limi→∞[L(li, mi, ni)/(liminiloglimini)]=0. for some

regular sequence of points {(li, mi, ni)}.

Proof: (1): We construct a 4-DMA1 M accepting T1 as

follows. Given an input x with l1(x) = l, l2(x) = m, and

l3(x) = n, M first checks, by sweeping plane by plane, that

each plane of x contains exactly one ‘1’, and M then

checks, by making a zigzag of 45°-direction from top

plane to bottom plane, that x has exactly d (l, m, n)-blocks

for some integer d≥2. After that, M tests by utilizing its

own marker whether the last (l, m, n)-block is identical to

some other (l, m, n)-block. M then finds the ‘1’ position

on the plane and move up vertically from this position. In

this course, each time M meets a ‘1’ position, it checks

whether or not there is a marker on the plane (containing

the ‘1’ position).

(i):If there is a marker on the plane, M knows that the

kth planes of the hth and the last (l, m, n)-blocks are

identical, and so M then tries to check whether the next

(k+1)th planes of the hth and the last (l, m, n)-blocks are

identical.

(ii):If there is no marker on the plane, M goes back to

the ‘1’ position on the plane, and vertically moves up

again to find the next ‘1’ position.

In this case, if M eventually encounters the top boundary,

M knows that the kth planes of the hth and the last (l, m,

n)-blocks are different (thus, the hth (l, m, n)-block is not

347

http://ja.wikipedia.org/wiki/%E7%9F%A2%E5%8D%B0

Makoto Nagatomo, Shinnosuke Yano, Makoto Sakamoto, Satoshi Ikeda, Hiroshi Furutani, Takao Ito and Tsutomu Ito, Yasuo Uchida, Tsunehiro

Yoshinaga

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

identical to the last (l, m, n)-block), and so M then tries to

check whether the next (h+1)th (l, m, n)-block is identical

to the last (l, m, n)-block.

 In this way, M enters an accepting state just when it

finds out some (l, m, n)-block, each of whose planes is

identical to the corresponding plane of the last (l, m, n)-

block. It will be obvious that T(M)= T1.

(2):Suppose to the contrary that there exists an SV4-

DTM(2L(l, m, n)) M accepting T1, where L(l, m, n) is a

function such that

limi→∞[L(li, mi, ni)/(liminiloglimini)]=0.
For some regular sequence of points {(li, mi, ni)}. Let s

and t be the numbers of states in the finite control and

storage tape symbols of M, respectively. We assume

without loss of generality that if M accepts an input, then

M enters an accepting state on the bottom boundary. For

each l≥1, m≥1, n≥1, let

V(l, m, n)= {x∈T1 |l1(x)=l and l2(x)=m and l3(x)=n and (x

has exactly ((lmn)lmn+1) (l, m, n)-blocks)}. For each

x∈V(l, m, n), let B(x)={b∈{0, 1}(4) |∃h(1≤h≤(lmn)lmn) [b

is the hth (l, m, n)-block of x] }, and let S(l, m, n)= {B(x)

| x∈ 𝑉(l, m, n)}. Note that for each x∈ 𝑉(l, m, n), there is

a sequence of configurations of M which leads M to an

accepting state. Let conf(x) be the semi-configuration just

after M leaves the second-to-last (l, m, n)-block of x. Then,

we get following proposition.

Proposition 3.1. For any two tapes x, y∈V(l, m, n), if B(x)

≠ B(y), then conf(x) ≠ conf(y).

Proof of Lemma 3.1(continued): There are at most

E (l, m, n)=(l+2)(m+2)(n+2)s2L(l, m, n)t2L(l, m, n)

different semi-configurations of M just when M enters the

last (l, m, n)-block of tapes in V(l, m, n). On the other

hand,

|S(l, m, n)|=2r-1 (r=(lmn)lmn).

Thus, from the assumption concerning the function L(l,

m, n), it follows that there exists a point (li, mi, ni) such

that |S(li, mi, ni)|＞E(li, mi, ni). For such (li, mi, ni), there

exist two tapes x, y in V(li, mi, ni) such that B(x) ≠ B(y)

and conf(x) ≠conf(y). This contradicts Proposition 3.1.

This completes the proof of (2). □

 From Lemma 3.1, we can conclude as follows.

Theorem 3.1. To simulate 4-DMA1’s,

(1) SV4-NTM’s require Ω(lmnloglmn) space, and

(2) SV4-DTM’s require 2Ω(lmnloglmn) space.

 By using the same technique as in the proof of

Theorem 3.1, we can get as follows.

Theorem 3.2. To simulate 4-NMA1’s,

(1) SV4-NTM’s require Ω(l2m2n2) space, and

(2) SV4-DTM’s require 2Ω(l2m2n2) space.

4. Conclusion

In this paper, we showed the necessary spaces for four-

dimensional Turing machines to simulate four-

dimensional one-marker automata. It will be interesting

to investigate how much space is necessary and sufficient

for seven-way four-dimensional deterministic or

nondeterministic Turing machines to simulate four-

dimensional ‘alternating’ one-marker automata.

References

1. M. Blum and C. Hewitt, “Automata on a two-dimensional

tape”, IEEE Symposium on Switching and Automata

Theory, pp.155-160 (1967).

2. M. Sakamoto, “Three-dimensional alternating Turing

machines”, Ph.D. Thesis, Yamaguchi University (1999).

3. M.Nagatomo, M.Sakamoto, H.Susaki, T. Zhang, S.Ikeda,

H.Furutani, T.Ito, Y.Uchida, and T.Yoshinaga, “Sufficient

spaces for seven-way four-dimensional Turing machines

to simulate four-dimensional one-marker automata”,

Proceedings of the International Conference on Artificial

Life and Robotics（ICAROB2015）, Horuto Hall, Oita,

Japan，OS6-1，pp.340-343(CD-ROM) (2015).

348

