

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

Development of a Tool to Keep Consistency between a Model and a Source Code

in Software Development Using MDA.

Yuuki Kikkawa*, Tetsuro Katayama*, Yoshihiro Kita†,

Hisaaki Yamaba*, Kentaro Aburada‡ and Naonobu Okazaki*

*University of Miyazaki, Japan,†Tokyo University of Technology, Japan

‡Oita National College of Technology, Japan

kikkawa@earth.cs.miyazaki-u.ac.jp, kat@cs.miyazaki-u.ac.jp, kitayshr@stf.teu.ac.jp,

yamaba@cs.miyazaki-u.ac.jp, aburada@oita-ct.ac.jp, oka@cs.miyazaki-u.ac.jp

Abstract

This study improves efficiency of software development using MDA. This paper develops the tool that keeps

consistency between a model and a source code in software development using MDA. The tool has two functions:

(i) Generating a source code and (ii) Keeping consistency between a model and a source code. A simple ATM

example is used in order to confirm effectiveness of the tool. The tool can reduce time and effort to keep

consistency between models and a source code.

Keywords: MDA (Model Driven Architecture), Extended Activity Diagram, Activity diagram, Detail specification.

1. Introduction

MDA (Model Driven Architecture) is a concept of

software development.1 MDA defines five models:

business model, requirement model, platform

independent model (PIM), platform specific model

(PSM), and physics model. Each model has different

abstraction level. A developer defines models and

generates a less abstract model by software

development in MDA. Here, MDA tools are used to

generate a less abstract model. A developer uses UML

(Unified Modeling Language)2 for modeling PIM and

PSM.

Before generation of a less abstract model, a

developer must define generation rules of high abstract

model. A method to support the definition of a

generation rule is researched.3

One of the MDA's problems is how to keep

consistency between the original model and an edited

model which is generated from the original. A

modification tool of PIM to keep consistency with PSM

is researched.4

Also, there is no consistency if a developer edits the

original model. A developer can keep consistency if a

MDA tool generates models from the edited models

again. Here, some MDA tools can generate a complete

model from models including detail specification. A

framework that generates the executable source code

from a class diagram and a state machines diagram is

researched.5 However, MDA tools cannot generate

complete models from abstract models because these

models do not have detail specification of a system. The

developer must modify generated models to fit the

modified original models or generate a new model from

the modified models with a MDA tool and then add the

detail specification to the new model by hand again.

This study improves efficiency of software

development using MDA. We proposed a modification

method of a source code to correspond with a modified

model in MDA.6 However, we did not implement the

method. In this paper, we develop the tool that keeps

340

Yuuki Kikkawa, Tetsuro Katayama, Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

consistency between a model and a source code in

software development using MDA. This paper

introduces the tool and describes how we implement the

tool.

2. The Developed Tool

This chapter describes functions and an overview of the

tool. Here, the tool treats with activity diagram of UML

and programming language C++.

2.1. Functions

The tool has two functions: (i) generating a source code,

(ii) keeping consistency between a model and a source

code. (ii) consists of 3 steps. Fig. 1. shows each function.

An input of (i) is an activity diagram, and an output

of (i) is the source code based on the activity diagram.

Inputs of (ii) are an unmodified activity diagram, the

modified activity diagram, and the source code

including the detail specification. An output of (ii) is a

source code which is consistent with the modified

activity diagram and includes the detail specification.

In executing (ii), the tool generates an EAD

(Extended Activity Diagram) as intermediate data. An

EAD is a format of the data added a part of the source

code which has the detail specification to the activity

diagram.

2.2. Overview

Fig. 2 shows an overview of the tool. The tool consists

of 4 parts shown below.

(i) Menu bar.

(ii) Mode select panel.

(iii) Multipurpose panel.

(iv) Paint panel.

A developer can execute a function of the tool by (i).

By using (ii), a developer can select an operation he

wants to do on (iv). (iii) assists the selected operation on

(iv). (iv) shows activity diagram.

3. Implementation

This chapter describes how to implement each function.

Here, the tool sets node ID and edge ID in the node and

the edge that the developer describes. Node ID and edge

ID are unique number in a diagram.

3.1. Generating a source code

The tool generates a source code from the activity

diagram. The steps to generate a source code are shown

as below.

(i) Acquire the function name

The tool generates a skeleton of source code. The

function name is the activity name that is described

in the activity diagram. Here, the type and the

parameter of the function are void.

(ii) Select the initial node

The tool selects the initial node.

(iii) Implement the function

The tool executes the process as below depending

on the type of the selected node.

 Call activity node

Write the name of the call activity node to the

source code.

 Decision node

Write an if-statement to the source code.

Conditions of if-statement are guard conditions of

this node.

Fig. 1. Functions of the tool.

Fig. 2. Overview of the tool.

341

 Development of a Tool

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

 Activity final node

 Finish the generation of the source code.

 Other than the above

 Do nothing.

(iv) Select another node

The tool reselects the node connected by the

outgoing edge of the selected node and go to (iii).

3.2. Generating an EAD

The tool keeps consistency between a model and a

source code. At the first step of the function, the tool

generates an EAD. The steps to generate an EAD are

shown as below.

(i) Select the first line of the source code added the

detail specification.

 We call the selected source code “LOS (line of

selected)”

(ii) Generate and extract a line of source code from the

activity diagram.

 Generation rule of a source code is same as the

function (i) of the tool.

(iii) If (ii) and the LOS are not same character string,

execute the process shown as below.

(a) Write the LOS to the activity diagram.

(b) Encircle lines written in (a) as a node.

(c) Select the original node of the generated source

code in (ii).

(d) Connect the incoming edge for the selected

node to the node generated in (b).

(e) Make an edge connected with the selected node

and the node generated in (b).

(f) Change the LOS to the next line of the current

LOS.

(g) Go to (iii).

(iv) Change the LOS to the next line of the current LOS.

(v) Go to (ii).

Later, we call an encircle node a platform specific

node. We define a node other than a platform specific

node as a platform independent node. We define an

edge connected with a platform specific node as a

platform specific edge. We define an edge other than a

platform specific edge as a platform independent edge.

3.3. Modifying the EAD

At the second step of the function which keeps

consistency between a model and a source code, the tool

modifies the EAD to correspond with the modified

activity diagram. The steps to modify the EAD are

shown as below.

(i) Add an edge adjacent to a platform specific node.

(a) Select a platform independent edge from an

EAD.

(b) If selected edge connects a platform specific

node to a platform independent node and the

platform independent node does not exist in the

modified activity diagram, execute the process

shown as below.

1. Select a node in the modified activity

diagram which has the same node ID as the

selected node.

2. Select a next node of the current selected

node in the modified activity diagram.

3. Select a node in the EAD which has the

same node ID as the selected node in the

modified activity diagram.

4. Make an edge connected with the first

selected node and the second selected node

in the EAD.

(c) If the selected edge connects a platform

independent node to a platform specific node

and the platform independent node does not

exist in the modified activity diagram, execute

the process shown as below.

1. Select a node in the modified activity

diagram which has the same node ID as the

selected node.

2. Select a previous node of the current

selected node in the modified activity

diagram.

3. Select a node in the EAD which has the

same node ID as the selected node in the

modified activity diagram.

4. Make an edge connected with the first

selected node and the second selected node

in the EAD.

(d) If there is an unselected node, select an

unselected node and go to (b).

(ii) Delete edges and nodes.

(a) Select a node or edge from the EAD.

342

Yuuki Kikkawa, Tetsuro Katayama, Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

(b) If the modified activity diagram does not

consist of a node or edge which has the same

ID as a selected node or an edge, delete the

selected node or edge.

(c) If there is an unselected node or edge in the

EAD, select an unselected node or edge and go

to (b).

(iii) Add edges or nodes.

(a) Select a node or edge from the modified

activity diagram.

(b) If the EAD does not consist of a node or edge

which has the same ID as a selected node or

edge, add the selected node or edge to EAD.

(c) If there is an unselected node or edge in the

modified activity diagram, select an unselected

node or edge and go to (b).

3.4. Generating the source code from the EAD

The tool generates a source code from the EAD. The

steps to generate a source code are same as section 3.1.

If the tool selects a platform specific node, the tool

writes its name to the source code.

4. Application Example

We use a simple ATM as an example to confirm

effectiveness of the tool. This ATM system executes

password checking process. If a user successes

password checking, this system executes a withdrawal

process or a depositing process by a user’s input. Fig. 3

shows the activity diagram of the ATM system.

The tool generates a source code from the activity

diagram. Fig. 4 shows a generated source code.

The developer adds the detail specification to the

generated source code in order to execute it. Fig. 5.

shows the source code added the detail specification.

Suppose a case that the requirement of specification

is changed, after adding the detail specification. The

developer needs to modify the activity diagram by

deleting and adding some elements of the activity

diagram. Fig. 6 shows a modified activity diagram. The

developer deletes the password checking process to

sequence of deposit.

The tool generates a new source code from the source

code including the detail specification, the modified

activity diagram, and original activity diagram. Fig. 7

shows a generated source code. The source code

includes the detail specification.

5. Discussion

MDA Tools such as EA7 (Enterprise Architecture) can

generate a skeleton of a source code from a class

diagram. In addition, EA can generate a source code

from an activity diagram or a state machine diagram.

However, the source code generated by EA does not

have the detail specification. It takes time and effort that

the developer adds the detail specification to the source

code generated from the modified activity diagram.

Fig. 3. The activity diagram of the ATM system.

Fig. 4. The generated source code.

343

 Development of a Tool

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

The developed tool can generate a source code

including the detail specification. The tool can reduce

time and effort to add the detail specification to the

source code generated from the modified activity

diagram. Moreover, it can reduce time and effort to

keep consistency between models and a source code

after the requirement specification is modified.

Therefore, the tool is useful for efficiency of software

development using MDA.

6. Conclusion

This paper develops the tool that keeps consistency

between a model and a source code in software

development using MDA. The tool can generate the

source code that corresponds with the modified activity

diagram and has information about the detail

specification.

We have confirmed that the tool can generate a

source code including the detail specification from the

original activity diagram, the modified activity diagram,

and the original source code. Therefore, the tool is

useful for efficiency of software development.

Future issues are as follows.

 Improvement of the tool to treat with other

statements except if-statement.

 Improvement of the tool to treat with programming

language Java.

References

1. MDA (Model Driven Architecture),

http://www.omg.org/mda (accessed November 30, 2016).

2. UML (Unified Modeling Language),

http://www.omg.org/spec/UML/2.4.1 (accessed

November 30, 2016).

3. D. Lopes, S. Hammoudi, J. Bézivin, F. Jouault: Mapping

Specification in MDA: From Theory to Practice,

Interoperability of Enterprise Software and Applications,

(Springer-Verlag London Ltd 2006), pp.253-264,

4. Lionel C. Briand, Yvan Labiche, Tao Yue: Automated

traceability analysis for UML model refinements,

Information and Software Technology, Vol. 51 (2009),

Issue2, pp. 512-527.

5. A. Derezinska, Code Generation and Execution

Framework for UML 2.0 Classes and State Machines,

IMCSIT, (2008), pp. 517-524.

6. Yuuki Kikkawa, Tetsuro Katayama, Yoshihiro Kita,

Hisaaki Yamaba, Kentaro Aburada and Naonobu

Okazaki, Proposal of a Modification Method of a Source

Code to Correspond with a Modified Model in MDA,

International Conference on Artificial Life and Robotics,

(2015), pp. 384-387.

7. Enterprise Architect, http://www.sparxsystems.jp

(accessed November 30, 2016).

Fig. 6. The modified activity diagram.

Fig. 5. The source code added the detail specification.

Fig. 7. The source code corresponded with the modified

activity diagram.

344

