

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

Quantitative Evaluation of Flash-based Educational Visualizing Simulator

Kei Takeichi, Yoshiro Imai, Kazuaki Ando, Tetsuo Hattori

Kagawa University, 2217-20 Hayashi

Takamatsu City, Kagawa 761-0113, Japan

E-mail: {hattori, imai, ando}@eng.kagawa-u.ac.jp

Yusuke Kawakami

DynaxT Co., Ltd., 2271-6 Hayashi

Takamatsu City, Kagawa 761-0113, Japan

E-mail: riverjp2002@gmail.com

Abstract

A Flash-based simulator of CPU scheduling has been developed and utilized for educational visualization in the class

of university lecture. We have designed and implemented it with Flash-based scripting language in order to execute

it as a stand-alone application as well as in various browsing environment such as Microsoft IE, Google Chrome

and/or FireFox (Mozilla). Based on questionnaire for our simulator in the lecture, its quantitative evaluation has been

carried out by means of statistical analysis. Our report describes overview of our Flash-based simulator and the results

of the above quantitative evaluation.

Keywords: Educational visualization, Questionnaire-based Evaluation, Statistical analysis

1. Introduction

As a matter of course, software system covers many

important areas from fundamentals to applications. This

time, we focus on Operating System, and particularly

CPU scheduling algorithm. It must be cover several kinds

of themes that students should understand during their

school days. A simple algorithm, namely FCFS (First

Come and First Served) is very natural so that it is one

the most fundamental strategies to decide its priority for

users, clients, processes/tasks and so on. Priority based

algorithm is another candidate to determine the order of

execution. It is very significant idea to choose a suitable

item around potentially selected targets. It means which

is better, or which is optimal of them. SPTF (Shortest

Processing Time First) is to be chosen as one of the

priority-based algorithms in this study. In other view

point, RR (Round Robin) is evaluated as a policy of

algorithm to realize equality of opportunity around the

targets. It is a little complicated but very useful strategy

to choose item with equal opportunities.

In order to teach students these above algorithms

efficiently, we had better utilize some suitable

educational tool to visualize their behavior and results for

specific conditions1,2. A visual simulator is one of the

useful solutions to provide educational tool(s) for

students who wants to understand such theme of

information processing education in an efficient and

40

Kei Takeichi, Yoshiro Imai, Kazuaki Ando, Tetsuo Hattori, Yusuke Kawakami

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

effective manner3. In this study, we have developed some

useful educational tools to demonstrate practical CPU

scheduling algorithm(s) and provide visual

understanding for students in an effective way.

2. Overview of Visualizing Simulator

In a lecture of Operating System of our university, most

important algorithms of CPU scheduling are FCFS,SPTF,

and RR, we think. They are very trivial but sometimes

very useful in the real operating systems. So we have

employed these above algorithms as fundamental

procedures to decide CPU scheduling in our visualizing

simulator. The above three procedure based on FCFS,

SPTF and RR are as follows;

(1) FCFS is very much simple, but clearly well-defined

strategy to decide next candidate to be performed, just

like First-In First-Out(FIFO queue). This algorithm is

sometimes the target to be compared with other

algorithm(s). And moreover, a result applied by this

algorithm will be not so worse than other ones derived

from complicated algorithm(s).

(2) SPTF is one of the most famous priority-based

assigning/allocating algorithm. Whenever every event

happens, namely conditions have changed, it must be

investigated which candidate has the best priority at that

time. So we had better call this algorithm Shortest

Remaining Processing Time First (SRPTF), because we

must consider not the total processing time but remaining

processing one in order to decide which candidate has the

best priority at that time or later.

(3) RR is a typical non-priority based algorithm in order

to provide 'equality of opportunity' which can realize

taking turns at it. This algorithm can retrieve candidates

which are waiting for service and select/assign one of

them who wait for the longest time or longer than others.

It is a little complicated for beginners to understand

details of RR-based procedure and/or develop a kind of

corresponding programs. And we may sometimes meet

its results with not suitable performance for specific

applications. But equality of opportunity is very

important for several users to receive their necessary

services.

3. Quantitative Evaluation

This section presents quantitative evaluation of our

visualizing simulator. As one of the quantitative

evaluation for our CPU scheduling simulator, at first, we

compare the execution time of simulation of native Flash

player with ones on the below three major browsers. The

result is summarized in the following Table 1.

Table 1. Comparison of Execution Time(s)

between Different Environments.

Host Application Execution Time

Flash Player (Ver.10) Stand alone 32.25 (sec.)

MS-Internet Explorer 11.0.9600 28.95 (sec.)

Mozilla FireFox 35.0.1 35.19 (sec.)

Google Chrome 40.0.2214.11 m 93.61 (sec.)

As another quantitative evaluation for our simulator,

secondly, we have carried out questionnaire in the

classroom lecture of Operating System in our university

after using our simulator. The questionnaire includes

following six questions;

Q#1 Is it easy to utilize this simulator? (yes: 2,neutral:1,

no:0)

Q#2 Is it effective to learn CPU scheduling algorithm

with this visualizing simulator? (yes: 2, neutral:1, no:0)

Q#3 Do you understand CPU scheduling algorithm more

suitably with this simulator? (yes: 2, neutral:1, no:0)

Q#4 Are you interesting in CPU scheduling algorithm by

means of this simulator? (yes: 2,neutral:1, no:0)

Q#5 Are you interesting in other themes of Operating

System after usage of this simulator? (yes: 2, neutral:1,

no:0)

Q#6 Do you need to utilize another type of simulator in

order to learn Operating System? (yes: 2, neutral:1, no:0)

Our questionnaire described before can obtain just 20

answers from students of the class because of carrying

out on a voluntary basis, although we used to have the

class for Operating System with 40 students or more. The

result of such a questionnaire is summarized in Table 2.

Q#1 has 17 numbers of answer "yes" per 20 students (i.e.

85%), Q#2 has 18 numbers of answer "yes" per 20

students (i.e. 90%) and Q#3 has 12 numbers of answer

"yes" per 20 students (i.e. 60%). From the questionnaire,

many students do feel easy to utilize our CPU scheduling

41

 Quantitative Evaluation of Flash-based

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

simulator and consider to be effective for learning CPU

scheduling algorithm by means of using our simulator.

And majority, namely six out of ten, of replying students

understand CPU scheduling algorithm more suitably

with this simulator.

Table 2. Result of Questionnaire about our

Simulator.

Student Q#1 Q#2 Q#3 Q#4 Q#5 Q#6

S01 2 2 2 1 1 2

S02 2 2 1 1 1 2

S03 1 1 0 2 1 2

S04 2 2 2 1 2 2

S05 2 2 1 1 1 1

S06 2 2 2 1 1 2

S07 2 2 1 1 1 2

S08 2 2 2 1 1 2

S09 2 2 2 1 1 1

S10 2 2 2 1 1 2

S11 2 2 1 1 1 2

S12 2 2 2 1 1 1

S13 1 2 1 1 1 2

S14 2 1 2 1 1 2

S15 2 2 2 2 1 2

S16 2 2 1 1 1 2

S17 2 2 1 2 1 2

S18 2 2 2 2 2 2

S19 2 2 2 1 1 2

S20 1 2 2 2 2 2

At the same time, however, Q#4 has just 5 numbers of

answer "yes" per 20 students (i.e. 25%) and Q#5 has only

3 numbers of answer "yes" per 20 students (i.e. 15%). In

order to perform test of independence among Q#1, Q#2

and Q#3, we will demonstrate to calculate "2 test of

goodness-of-fit" for relation between results from Q#1

and Q#2 as well as one for Q#1 and Q#3, respectively.

Relation between results from Q#1 and Q#2 is expressed

in the left-hand of Table 3, while relation for Q#1 and

Q#3 is done in the right-hand. The former has 2 x 2 table-

items and the latter has 2 x 3 ones.

Table 3. Relation between Results from Q#1 and

Q#2 (left-hand) & from Q#1 and Q#3 (right-hand).

Q#2 Q#3

yes neutral no yes neutral no

Q#1

yes 16 1 11 6 0
neutral

2 1 1 1 1
no

Based on Table 3, a two-way contingency table for Q#1

and Q#2 can be introduced, which is shown in Table 4,

while another two-way contingency table for Q#1 and

Q#3 can be also done, which is shown in Table 5.

Table 4. Two-way Contingency Table for Q#1

and Q#2.

Q#2

SUM
R

yes neutral

Q#1
yes 16(18*17/20) 1(2*17/20) 17

neutral
2(18*3/20) 1(2*3/20) 3

SUM
C

18 2 20

2: goodness-of-fit statistic for Table 4 can be calculated

in the following expression (Eq-1);

 (Eq-1)

As described in expression (Eq-1), degree of freedom for

Table 4 is = (2-1) x (2-1) = 1. So we can have 2

=0.05(=1) = 3.8415 from the 2 distribution table.

"Statistical independence" between results from Q#1 and

Q#2 can be confirmed so that users of our simulator not

only consider it to be easy to utilize but also recognize

effectiveness to learn CPU scheduling algorithm with it

respectively and independently.

Table 5. Two-way Contingency Table for Q#1

and Q#3.

Q#3
SUM

R

yes neutral no

Q#1
yes 11(12*17/20) 6(7*17/20) 0(1*17/20) 17

neutral
1(12*3/20) 1(7*3/20) 1(1*3/20) 3

SUM
C

12 7 1 20

Just like the same way, 2: goodness-of-fit statistic for

Table 4 can be calculated in the following expression

(Eq-2);

135.2)20/3*2/()}20/3*2(1{

)20/17*18/()}20/17*18(16{

}
*

/)
*

{(

2

2

2
2

1

2

1

2

Total

sumsum

Total

sumsum
y CR

i j

CR

ij

42

Kei Takeichi, Yoshiro Imai, Kazuaki Ando, Tetsuo Hattori, Yusuke Kawakami

© The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016), Jan. 29-31, Okinawa Convention Center, Okinawa, Japan

 (Eq-2)

As described in expression (Eq-2), degree of freedom for

Table 5 is = (2-1) x (3-1) = 2. So we can have 2

=0.05(=2) = 5.9915 from the 2 distribution table.

"Statistical independence" between results from Q#1 and

Q#3 can be confirmed so that users of our simulator not

only consider it to be easy to utilize but also understand

CPU scheduling algorithm more suitably with our

simulator respectively and independently.

In other words, both of results from Q#1 and Q#2 are not

only very good scores, namely 85% of the former's

answers are "yes" and 90% of the latter's answers are

"yes", but also the two scores are statistically independent

each other, namely there is no reason that one scores can

become good because another scores are good. And

major part (i.e. 60%) of users, whose answers from Q#3

are "yes", understand CPU scheduling algorithm more

suitably by means of our simulator independently from

its operability.

4. Conclusion

The paper describes an Adobe-Flash based educational

visualizing simulator for students to learn CPU

scheduling algorithm graphically and practically. Our

Flash-based simulator can execute on the major Web

browsers such as Microsoft Internet Explorer, Mozilla

FireFox and Google Chrome and provide efficient

explanation for students of lecture "Operating System".

As quantitative evaluation for our simulator, we have

carried out questionnaire for the students using the

simulator and apply statistical analysis for the results of

the questionnaire. We can obtain and confirm a good

results from the above performance through analysis.

Namely,

(1) It can be confirmed that users of our simulator not

only consider it to be easy to utilize but also recognize

effectiveness to learn CPU scheduling algorithm with our

visualizing simulator respectively and independently.

(2) It can be confirmed that users of our simulator not

only consider it to be easy to utilize but also understand

CPU scheduling algorithm more suitably with our

simulator respectively and independently.

References

1. Sarjoughian,H., Yu Chen, Burger,K. : A component-based

visual simulator for MIPS32 processors. Proceedings of

38th Annual Conference on Frontiers in Education(FIE

2008)., pp. F3B-9 – F3B-14 (October 2008)..

2. Kabir,M.T., Bari,M.T., Haque,A.L. : ViSiMIPS: Visual

simulator of MIPS32 pipelined processor. Proceedings of

6th International Conference on Computer Science &

Education (ICCSE2011), pp. 788 – 793 (August 2011).

3. Imai,Y., Tomita,S., Niimi, H., Kitamura,T. : Web-Based

Computer Visual Simulator. Technology Enhanced

Learning (IFIP International Federation for Information

Processing), Volume 171, pp 111–120(Summer 2005).

4. Lee, K.-C., Lee, J. : Programming physics softwares in

Flash. Computer Physics Communications, Volume 177,

Issues 1-2, pp 195–198 (July 2007).

5. Stodulka, P., Privitzer, P., Kofranek, J., Tribula, M., Vacek,

O. : Development of WEB accessible medical educational

simulators. Proceedings of 6th EUROSIM Congress on

Modelling and Simulation, 6 pages (September 2007).

6. Imai,Y., Takeichi, K. : Development and Evaluation of

Adobe Flash based CPU Scheduling Simulator Executable

on Major Multiple Web Browsers. Proceedings of 2015

IEEE International Conference on Intelligent Networking

and Collaborative Systems (INCoS-2015, Tamkang

University, Taipei, TAIWAN(RoC)), pp.149–155

(September 2015).

1365.0)20/3*1/()}20/3*1(1{

)20/17*12/()}20/17*12(11{

}
*

/)
*

{(

2

2

2
2

1

2

1

2

Total

sumsum

Total

sumsum
y CR

i j

CR

ij

43

