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Abstract 

Simultaneous Localization and Mapping (SLAM) is the problem in which a sensor-enabled mobile robot incrementally 

builds a map for an unknown environment, while localizing itself within this map. The Kalman Filter’s linearized error 

propagation can result in big errors and instability in the SLAM problem. One approach to reduce this situation is using 

of iteration in Extended Kalman Filter (EKF) and Sigma Point Kalman Filter (SPKF). We will show that the 

recapitulate versions of kalman filters can improve the estimation accuracy and robustness of these filters beside of 

linear error propagation. Simulation results are presented to validate this improvement of state estimate convergence 

through repetitive linearization of the nonlinear model in EKF and SPKF for SLAM algorithms. Results of this 

evaluation are introduced by computer simulations and verified by offline implementation of the SLAM algorithm on 

mobile robot in MRL Robotic Lab. 

Keywords: Extended Kalman Filter, Sigma Point Kalman Filter, SLAM, instability, Mobile Robot,Nonlinear 

Estimation.

1. Introduction 

Simulation Localization and Mapping (SLAM) has the 

problem of incrementally building a spatial consistent 

map from noisy sensor data gathered by a robot and 

tracking robot pose with the built map[1][2].In the past 

decade, the SLAM related research has received an 

increasing and extensive attention in theory and 

application level. Due to the mutual dependence of 

robot pose and the map, the noise of robot pose arise the 

uncertainty of map estimation and vice versa.  Therefore, 

this problem requires a solution in a high dimensional 

space. 

Numerous method have been used to address the SLAM 

problem, an overview of which is presented in [3],[4]. 

One of the most popular approaches to the SLAM 

problem are the extended Kalman filter (EKF-SLAM). 

The effectiveness of the EKF approach lies on the fact 

that it holds a fully correlated posterior over feature 

maps and vehicle poses [3]. Due to the inherent non-

linearity of the SLAM problem, it applies the Kalman 

filter framework to nonlinear Gaussian systems, by 

employing the first-order Taylor expansion to 

approximate the non-liner models. However, this 

approximation treatment often introduces large errors in 

the estimate of the states and can lead filter to 

divergence [5].These serious drawbacks have been 

confirmed in [4],[6],[7] with carefully designated 

experiments. Another serious potential drawback of 

EKF-SLAM is the derivation of the jacobian matrices, 

which is really a bothersome process. 

Some researchers applied these new extensions of the 

Kalman filters family called Sigma Point Kalman Filters 

(SPKF) to solve the SLAM problem [8],[9]. In spite of 

superiority of the SPKF over the EKF, We will study 

the future of SPKF over EKF. 

In this paper, we want to investigate SLAM with SPKF 

and show this method robustness. The rest of the paper 

is structured as follows. Section II summarizes the EKF 

based SLAM. The we will briefly describe the SPKF 

based SLAM in section III. In section, IV the 

formulation of the EKF and SPKF approaches with their 

iterated versions in section V. Section VI concludes the 

paper. 

2. EKF SOLUTION FOR THE SLAM 

In this section we summarize the basic EKF SLAM 

equations to point out the steps in which linearized 

approximations are introduced. We subsequently 

analyze their influence in the consistency of the solution 

obtained. In the standard EKF-based approach to SLAM, 
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Fig.1. Robot Position 

 

The Extended Kalman Filter estimates the mean and 

covariance of the posterior probability distribution 

function (PDF) of the random state variable X. Let 
^

( )X k denote the mean of the posterior PDF at time k. 

The corresponding covariance matrix of the posterior 

distribution is ( )B k
. The process model for vehicle 

and features can be written as: 

( 1) ( ( ), (k 1)) ( 1)
  (1)

( 1) X ( ) 0

v v v

m m

X k f X k u v k
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Where v
f  is the motion model of the Robot, u(k) is 

control input and v k( ) represents process noise that is 

zero mean white with covariance Q(k). The EKF fuses 

the odomtery measurements with a sequence of 

observations from the external sensors with the 

following observation model: 

 

( ) ( ( )) ( )     (2)z k h X k w k   

 

w (k) is zero mean white observation noise with the 

covariance matrix R(k). Four fundamental stages of the 

EKF based SLAM are briefly written as follows: 

I. Prediction 

( 1) ( ( ), ( 1)),

( 1) h( ( 1)),

( 1) ( ). ( ). ( ) ( ).        (3)T
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II. Observation 

 

( 1) ( 1) ( 1)                      (4)iiv k z k z k

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Moreover, corresponding matrix: 

( 1) . ( 1). ( 1).   (5)T

x xS k h B k h R k       

III. Update 

Poster distribution’s covariance can be same as follows: 

 

( 1) ( 1) ( 1) . v( 1)X k X k Wk k
 
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Kalman gain: 
1W( 1) B ( 1). h .S ( 1)                         (7)T
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IV. Consolidation 

After new feature is calculated, estimation must shown 

at last part of consoled state vector: 

( 1) ( ( ), z(k)).        (8)i ViX k g X k
 

   

i
g = convert function for polar observation z(k) to a 

global Cartesian feature location. 

3. SPKF SOLUTION FOR SLAM 

Mathematic framework of SPKF Based Slam will 

discuss in this section, in section 2 in this paper 

assumptions made for SLAM problem, we define a new 

consolidation state vector that include the original state 

vector X(k) and process noise. Block diagonal matrix of 

B(k) and process noise covariance matrix Q(k) is new 

covariance matrix: 

[ ]a T

k k k
X X V , 

0
         (9)

0

ka

k

k

B
B
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Sigma point at the time k will be: 

0 , , ,   (10)a a a

i k i kB B           
 

 

 is a scaling parameter that controls the spread of 

sigma point around the mean. We can use cholesky 

factorization for calculate more efficient the covariance 

matrix square root. According to [10],[11] these sigma 

points pass through the process model and transformed 

sigma points will be calculated: 

( 1) ( ( ), ( ), ( )),      (11)x x v

i i ik f k u k k       
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For the original consolidation state vector the ( )x

i
k 

is 

sigma points set and ( )v

i
k 

 is sigma point set for 

process noise. The associated covariance matrix and 

predicted state estimate can be computed as follows: 
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The transformed sigma points pass through the 

measurement model and samples of predicted are: 

( 1) ( ( 1))  (13)x
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Corresponding covariance matrices and predicted 

measurement can obtain: 
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Cross covariance matrix between state and measurement 

ZZ
B

 and covariance matrix and measurement error 

with assuming correct data are: 
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With observation noise additively the update state 

estimate and corresponding covariance matrix can be 

computed: 
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X X K v
 

 
 

   

1 1 1 . 1 1.B .    (16)T

k k k ZZ k kB B K K  

       

Kalam gain will be: 
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 detected the consolidation process easly 

performed with the following equations: 
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In above equations, the parameters 
m

i
w and 

c

i j
w are 

scalar positive valued weights.  

In following, we illustrated our results which we 

implemented on MATLAB: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Comparison of vehicle pose estimate 

errors for EKF (Blue line) vs.SPKF (Red 

Line) 
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Fig. 3.State Covariance of Robot for KLF ad 
SPKF 
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4.CONCLUSION 

In this paper, we investigated the EKF and SPKF 

frameworks to improve the estimation accuracy 

in simultaneous localization and mapping. All of 

simulation results consistently verified better 

performance and more accurate states estimate of 

the SPKF than EKF approaches. After 

Comparing the Errors and the Position vector of 

the Robot with two different optimizations, 

SPKF had significant better result than EKF. 
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Mean Square 

Error (MSE) 

 

R
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R
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EKF-SLAM 

 

 

0/622 

 

 

0/1180 

 

 

0/002 

 

 

SPKF-SLAM 

 

0/0077 

 

0/0120 

 

0/0003 

Table 1. Comparing the Mean Square errors for EKF 

and SPKF 

Fig.4. Comparing Robot position with EKF and SPKF 
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