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Abstract 

A DSSN model is a neuron model which is designed to be implemented efficiently by digital arithmetic 

circuit. In our previous study, we expanded this model to support the neuronal activities of several cortical 

and thalamic neurons; Regular spiking, fast spiking, intrinsically bursting and low-threshold spike. In this 

paper, we report our implementation of this expanded DSSN model and a kinetic-model-based silicon 

synapse on an FPGA device. Here, synaptic efficacy was stored in block RAMs, and external connection 

was realized based on a bus that conform to the address event representation. We simulated our circuit by the 

Xilinx Vivado design suit. 
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1. Introduction 

Silicon neuronal networks can simulate neuronal activity 

with low power consumption and in high speed. They are 

thought to be a promising way to realize an extremely 

large-scale network comparable to the human brain in 

future. The Field-Programmable Gate Array (FPGA) 

devices are commonly used for silicon neuronal networks 

because they can implement user-designed circuits with 

low cost. Many silicon neuronal networks on an FPGA 

can run at a higher speed than the biological real-time 

[1][2]. For example, a fully-connected 1024-neuron 

network that is 100 times the real-time speed has been 

implemented on a single Virtex-5 FPGA [3]. Thomas et al. 

adopted the Izhikevich (IZH) model that can simulate 

various types of neuronal activities with their 

corresponding parameter sets. Li et al. [4] constructed an 

auto-associative memory with 256 fully connected digital 

spiking silicon neuron (DSSN) models on an FPGA. The 

DSSN model [5] is an qualitative neuronal model 

designed for efficient implementation by efficiently in a 

digital arithmetic circuit. This model is a non-I&F-based 

model and can realize several neuronal activities 

including Class I and II in the Hodgkin’s classification [6]. 

This model can reproduce the gradient response in Class 

II neurons [7], because it does not abbreviate the 

calculation of the spiking process. Due to a trade-off 

between the reproducibility of neuronal activity and  

 

 

computational efficiency, diversified neuronal models are  

used in silicon neuronal networks. For example, the 

ionic-conductance models can reproduce a neuronal 

activity accurately but consumes excessive computational 

resources in large-scale implementations. On the other  

hand, neuronal models that approximate a spiking process 

by resetting of the state variables (integrate-and-fire 

(I&F) -based models), such as the LIF, exponential I&F 

model[], adaptive exponential I&F model[8] and IZH 

models, can be implemented at low computational cost. 

However, it has reduced reproducibility of complex 

neuronal activities. For instance, these models assume 

fixed maximum membrane potentials during the spike 

process, whereas these potentials are non-uniform in the 

nervous system. 

In our previous research [9], we expanded the DSSN 

model to cover cortical and thalamic neuron classes, 

including regular spiking (RS), fast spiking (FS), 

low-threshold spike (LTS) and intrinsically bursting (IB). 

We confirmed that the model behaves in the same way as 

the ionic-conductance model [10] in response to various 

magnitude of step input in each neuron classes.  

 In this paper, we designed digital arithmetic circuit for 

the DSSN model on an FPGA. We simulated our circuit 

on Xilinx Vivado design suit. The remainder of this paper 

is organized as follows. Section 2 introduces our neuron 

model and details of its implementation. The simulation 
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result is shown in Section 3. Section 4 summarizes the 

work and suggests ideas for future.  

 

Fig.1 Block diagram of the v-circuit. Symbols ×, + and MUX 

mean a multiplier, adder, multiplexer, respectively.  (A) 

Multiplication realized by shift operation and adder. (B) Add 

operation of the differential equation of v. (C) Correct 𝑣𝑖𝑗  are 

chosen by multiplexer depending on v and u. 

2. Methods 

2. 1 DSSN model 

The DSSN model is a qualitative neuronal model. 

It is designed so that diverse neuronal activities with fixed 

point Euler method. Given appropriate parameter sets, 

this model can reproduce various neuron classes 

including regular spiking (RS), fast spiking (FS), 

intrinsically busting (IB), and low-threshold spike (LTS). 

The model is given by 

𝑑𝑣

𝑑𝑡
=
∅(𝑢)

𝜏
(𝑓(𝑣) − 𝑛 − 𝑞 + 𝐼0 + 𝐼𝑠𝑡𝑖𝑚),  

𝑑𝑛

𝑑𝑡
=
1

𝜏
(𝑔(𝑣) − 𝑛), 

𝑑𝑞

𝑑𝑡
=
𝜀

𝜏
(ℎ(𝑣) − 𝑞), 

𝑑𝑢

𝑑𝑡
=

𝜀1

𝜏
(𝑣 − 𝑣0 − 𝛼𝑢), 

∅(u) = {

∅0                (𝑢 < 𝑟𝑢0)

∅1      (𝑟𝑢0 < 𝑢 < 𝑟𝑢1)

∅2                (𝑟𝑢1 < 𝑢),
 

𝑓(𝑣) ≡ {
𝑎𝑓𝑛(𝑣 − 𝑏𝑓𝑛)

2
+ 𝑐𝑓𝑛

𝑎𝑓𝑝(𝑣 − 𝑏𝑓𝑝)
2
+ 𝑐𝑓𝑝

 
(𝑣 < 0)

(𝑣 ≥ 0),
 

𝑔(𝑣) ≡ {
𝑎𝑔𝑛(𝑣 − 𝑏𝑔𝑛)

2
+ cgn

𝑎𝑔𝑝(𝑣 − 𝑏𝑔𝑝)
2
+ 𝑐𝑔𝑝

 
(𝑣 < 𝑟𝑔)

(𝑣 ≥ 𝑟𝑔),
 

ℎ(𝑣) ≡ {
𝑎ℎ𝑛(𝑣 − 𝑏ℎ𝑛)

2 + chn

𝑎ℎ𝑝(𝑣 − 𝑏ℎ𝑝)
2
+ 𝑐ℎ𝑝

 
(𝑣 < 𝑟ℎ)

(𝑣 ≥ 𝑟ℎ),
 

where v denotes the membrane potential, and n and q are 

the fast and slow variables, respectively, that abstractly  

 

Fig. 2 The architecture of 16 fully-connected network. The 

network is composed of 16 DSSN, 16 silicon synapse, and an 

accumlator unit 

 

describe the activity of the ion channels. The slow 

variable q controls the slow dynamics of the neuronal 

activity and has a key role to realize spike-frequency 

adaptation and burst firing. Variable 𝑢 is the slowest that 

modifies the structure of the fast subsystem comprising v 

and n. If sustained stimulus to the fast subsystem is taken 

as a bifurcation parameter, a saddle-node bifurcation is 

observed in the RS, FS, and LTS modes, and a 

homoclinic - loop bifurcation in the IB mode. The 

parameter 𝐼0 is a bias constant and 𝐼𝑠𝑡𝑖𝑚 represents the 

input stimulus. The other parameters determine the 

dynamical properties of the model. All of the variables 

and constants in this qualitative model are purely 

abstracted and have no dimension. 

 The model is solved by the Euler’s method (∆t =

0.0001). We developed differential equations for efficient 

implementation. The equations of the circuit for 

calculation of v are 

𝑣next =  𝑣_𝑣𝑣 + 𝑣_𝑣 + 𝑣_𝑛 + 𝑣_𝑞 + 𝑣_𝐼 + 𝑣_𝑐, 

𝑣_𝑣𝑣𝑖𝑗 = 𝑣
2 ∙ (∆𝑡 ∙ 𝑎𝑓𝑗 ∙ ∅𝑖/𝜏), 

𝑣_𝑣𝑖𝑗 = 𝑣 ∙ (∆𝑡 ∙ 𝑏𝑓𝑗 ∙ 𝑎𝑓𝑗 ∙ ∅𝑖/𝜏 + 1), 

𝑣_𝑛𝑖𝑗 = 𝑛 ∙ (−∆𝑡 ∙ ∅𝑖/𝜏), 

𝑣_𝑞
𝑖𝑗
= 𝑞 ∙ (−∆𝑡 ∙ ∅𝑖/𝜏), 

𝑣_𝐼𝑖𝑗 = 𝐼stim ∙ (∆𝑡 ∙ ∅𝑖/𝜏), 

𝑣_𝑐𝑖𝑗 = ∆𝑡 ∙ (𝑏𝑔𝑗 ∙ 𝑏𝑔𝑗 ∙ 𝑎𝑔𝑗 + 𝑐𝑔𝑗)/𝜏, 

𝑣_x =

{
  
 

  
 
𝑣_𝑥0𝑛       when                   𝑢 <  𝑟𝑢0 and 𝑣 > 0,
𝑣_𝑥0𝑝       when      𝑟𝑢0 <  𝑢 <  𝑟𝑢1 and 𝑣 > 0,

𝑣_𝑥1𝑛       when                  𝑟𝑢1 <  𝑢  and 𝑣 > 0,
𝑣_𝑥1𝑝       when                    𝑢 <  𝑟𝑢0 and 𝑣 > 1,

𝑣_𝑥2𝑛       when       𝑟𝑢0 <  𝑢 <  𝑟𝑢1 and 𝑣 > 1,
𝑣_𝑥2𝑝       when                     𝑟𝑢1 < 𝑢 and 𝑣 > 1,

 

                                                   for    𝑥 = 𝑣𝑣, 𝑣, 𝑛, 𝑞, 𝐼, and 𝑐. 

where, i denotes 0, 1, or 2 and j denotes n or p. In these, 

v × 1

× 2  

× 2  

× 2  

x 1.00101001
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× 2 2
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equations, we can calculate a product of parameters in 

advance and store it as a constant value. The  

 

Fig. 3 The architecture of external connection. This module has 

16 silicon synapse units and 16 accumlator units and an 

AER decoder. 

 

multiplication of a variable and a parameter is realized by 

shifters and adders (Fig.1(A)). To reduce the number of 

adders, coefficient was approximated by the sum of 2 𝑥; 

𝑥 denotes arbitrary integer number. Multiplier circuit is 

used once in an Euler’s method’s step for calculation of  

𝑣2. 𝑣𝑖𝑗  are screened by the multiplexer depending on the 

value of v and u (Fig. 1(C)). We constructed n-circuit and 

q-circuit in the same way. The DSSN unit consumes 1 

multiplier and 4 multiplexers. The numbers of adders are 

35, 33, 60, and 88 for RS, FS, LTS, and IB classes. 

 We adopted the silicon synapse circuit in [4] based on 

the kinetic synapse model [11].The equations are given 

by 

𝑑𝐼𝑠
𝑑𝑡
= {

𝛼(1 − 𝐼𝑠)           ([𝑇] = 1)

−𝛽𝐼𝑠                    ([𝑇] = 0)
 

where, 𝐼𝑠  represent the post-synaptic current and the 

value of [T] is 1 when the membrane potential of the 

presynaptic neuron is over the threshold (0). This silicon 

syanpse unit costs 1 multiplexer and 2 adders, and it 

requires 2 clocks by a step. 

 

2.2 Circuit architecute  

 Our circuit is composed of  16 fully-connected neurons 

and external input from an address event representation 

(AER)–based stimulus receiver module. The 

fully-connected neuronal network consumes 16 DSSN 

and 16 silicon synapse units and an accumlator unit 

comprising 1 multiplier and  1 adder and an 18kb block 

random access memory that stores synaptic weights (Fig. 

2). The synapse units calculate postsynaptic input 

depending on the 1-bit signal that denotes whether the 

membrane potential v of the pre-synaptic DSSN is over 

the threshold or not. The accumlator unit calculates 

weighted sum of the post-synaptic input. The 𝐼stim  is 

calculated  as follows.  

𝐼stim
𝑖 = 𝐶0∑𝑤𝑖𝑗

16

𝑗=1

𝐼𝑠
𝑗
+ 𝐼𝑒

𝑖  

 

Fig .4 Waveforms generated by the DSSN unit of RS (a), FS (b), 

LTS (c, d), IB (e). Excitable step inputs rise at t = 0.1 (a-c,e). 

inhibitory step inputs are provided from t = 0.2 to t = 1.0 (d). 

 

where i and j are the indices of  the post- and pre- 

synaptic neurons respectively, and 𝐼𝑒
𝑖  denotes an external 

input to the i th neuron, respectively. The parameter 𝑐0 is 

a coefficient to scale 𝐼stim into an appropriate range. 

The units for the external connection is composed of 16 

silicon synapse units and 16 accumlator units and an AER 

decoder (Fig.3). AER decoder receives 14-bit input signal 

by a clock. First 12-bit of input signal specifies an address 

of 4096 synapses by AER decoder. Next 1-bit represents 

rising or trailing of the pulse input, and the value of the 

bit is stored in the register corresponding to the  

specified address. Therfore,  we can assigne input pulse 

having an arbitrary length. Last 1-bit is an enable signal. 

 Synaptic weights are loaded from the 16 18kb block 

random acces memory. A synapse unit updates 256 

post-synaptic current depending on the decoded input 

signal at each ∆t  step, and the accumulator unit 

calculates an weighted sum of the post-synaptic inputs. 

𝐼𝑒
𝑖 = 𝑐1∑𝑤𝑖𝑘

2 6

𝑘=1

𝐼𝑠
𝑘 

where i and k are the indices of  the neurons and 

synapses, respectively. The parameter 𝑐1 is a coefficient 

to scale 𝐼𝑒
𝑖  into an appropriate range. 

 In our system, a ∆t step corresponds to 1024 clocks, 

and  1024 input signals are acceptable by 1 step. The 

DSSN unit require 10000 steps to simulate a second, and 

it runs 10 times faster than real-time under the 

assumptuion that a clock correspond to 10 ns. We 

represent all variables and synaptic weights using  18-bit 

signed fixed point with 14-bit fractions. 
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Fig.5 Raster plots of the spikes in the network. Neurons are RS 

(Neuron ID = 0-3), FS (4-7), LTS (8-11), IB (12-15).  

 

3. Result 

Here, we show the waveforms generated by the DSSN 

unit in response to external stimulus inputs. Figure 4(a) 

shows the waveform of the RS class that is a most typical 

neuron class in the cortex. A characteristic behavior of 

this class is spike-frequency adaptation; that is, the spike 

frequency decreases over time in response to a constant 

stimulation input. On the other hand, FS neurons fire with 

almost constant frequency (Fig.4(b)). LTS neurons exhibit 

periodic firing in reaction to excitable input stimulus 

(Fig.4(c)) and generate a burst firing just after the 

termination of a sufficient hyperpolarizing stimulus 

(Fig.4(d)). IB neurons generate the bursting at the onset 

of a stimulus, then continue to spiking (Fig. 4(e)). 

Figure 5 shows raster plots of the spikes in the network. 

We applied 12-bit signal correspond to each neuron by 

rotation and evoked spike, and additional spikes were 

evoked by the inner connection. Synaptic weights were 

assigned randomly.  

  

4. Conclusion 

In this paper, we constructed digital circuit of the DSSN 

model that supports four cortical and thalamic neuron 

classes. The implemented circuit could generate activities 

qualitatively comparable to the ionic-conductance model 

for each neuron class. It consumed only 1 multiplier for 

calculation of an Eular’s Method’s step, which is an 

expensive module in an FPGA. We confirmed the 

behavior of a network of 16 fully-connected DSSNs that 

can receive stimuli via 4096 synapses. Each synapse is 

controlled by 12-bit input signal through an AER decoder. 

 Our previous study implemented the DSSN model that 

supports the Class I and Class II  in the Hodgkin’s 

classification. We expect the circuit constructed in this 

work will be a basis for digital silicon neuronal networks 

that can support a wide variety of neuronal activities more 

elaborately than the I&F-based circuits. 

In future works, we will implement the DSSN model 

that supports the square-wave bursting and elliptic 

bursting which were already realized by software 

simulation. Larger-scale network will also be pursued.  
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