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Abstract: In this study, an actor–critic learning method was applied to a mobile robot. The method adopts a state representa-
tion based on distances between probability distributions. This state representation is less affected by the environment i.e., sen-
sor signals maintain an identical state even under certain environmental changes. A simulation was performed and verified that 
the mobile robot can learn action relationship in the suite state using the actor–critic method. 
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1 Introduction 
Over the past few decades, several researches have been 

conducted on autonomous robots. Given the wide variety of 
external environments, robot’s adaptability has become pri-
marily importance. In a robot system, it is important to de-
termine how the outside environment is processed as a state 
from sensor information.  

In a previous study, a state representation was developed 
on the basis of noisy sensor data using distances between 
probability distributions[1]. This state representation is in-
sensitive to the environment, i.e., sensor signals maintain an 
identical state even under certain environmental changes. 
Sensor signals are assumed to be expressed by probability 
distributions, and states are defined in terms of distances 
between distributions. 

In the previous study, reinforcement learning to the au-
tonomous mobile robot was applied using the proposed state 
representation. Then, by repeated trial and error, it was con-
firmed that the robot can learn a suitable state–action rela-
tionship that helps it to perform a given task. Specifically, 
the robot was trained by Q-learning method to move forward 
along walls. However, Q-learning cannot usually be applied 
to discrete state and action spaces. In such cases, the discrete 
state and the action of the robot must be defined prior to 
robot learning. 

 
In this study, an actor–critic method was applied to a 

mobile robot, which uses the proposed state representation. 
Actor–critic is a reinforcement learning algorithm that can 
process a continuous state and action space, demanding the 
need to define the discrete state and action prior to robot 
learning. 

A simulation was performed and verified that the mobile 
robot can learn action relationship in the suite state using the 
actor–critic method. The robot’s ability to perform the mov-
ing task was confirmed. 

2 State representation using distance between distribu
tions 

In this section, the proposed state representation was defined. 
In theoretical information and statistics, the distance be-
tween two probability distributions is expressed in several 
ways. f-divergence (f-div) is a family of measures introduced 
by Csiszár and Shields [2] that includes the well-known 
Kullback–Leibler divergence. The f-div of probability distri-
bution ݌௜ሺݔሻ from ݌௝ሺݔሻ is defined as 
 

ௗ݂௜௩൫݌௜ሺݔሻ, ሻ൯ݔ௝ሺ݌ ൌ ሻݔ௝ሺ݌׬ ݂ ൬
௣೔ሺ௫ሻ

௣ೕሺ௫ሻ
൰  (1)													,ݔ݀

 

Fig. 1. State representation using distance between
distributions [1]. 
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where ݂ሺݕሻ  is a convex function defined for ݕ	 ൐ 0 
and݂ሺ1ሻ ൌ 0. Qiao and Minematsu [3] proposed that f-div is 
invariant to invertible transforms and showed that all invari-
ant measures are of the f-div form. Furthermore, they ap-
plied the invariant of measures to speech recognition [4]. 

3 Mobile Robot Application and Behavior Learning 

Subsection 3.1shows how the proposed state representation 
is applied to a mobile robot. Subsection 3.2 describes behav-
ior learning by the actor–critic method. 

3.1 Mobile Robot Application 
Figure 2 shows the autonomous mobile robot, named e-

puck, used in our experiments. 
The robot has eight infrared distance sensors. In our ex-

periments, I used the six sensors labeled in Fig. 2. The next 
section describes an experiment in which the mobile robot 
performs a wall-following task. It was assumed that the ro-
bot’s sensors respond only to differences in the wall color 
and not to wall position. Figure 3 shows how the state repre-
sentation is acquired. First, while a robot moves in time ∆ݐ, 
each sensor memorizes ܯ	data. Next, the distances between 
the distributions of each sensor’s data are calculated. In this 
study, the sensor distribution ݅	ሺ1,⋯ , ݅,⋯  ሻis assumed toܫ
be Gaussian with mean ߤ௜ and standard deviation σ

௜
. I 

used the Bhattacharyya distance (BD), a widely used meas-
ure of f-div, as the distance between two distributions. The 
BD between the distributions of the sensors ݅  and 
 is given by the following formula (௝݌௜and݌)	݆

 

,௜݌൫ܦܤ ௝൯݌ ൌ
1
4
൫ߤ௜ െ ௝൯ߤ

௜ߪ
ଶ ൅ ௝ߪ

ଶ ൅
1
2
ln
௜ߪ
ଶ ൅ ௝ߪ

ଶ

௝ߪ௜ߪ2
.							ሺ2ሻ 

 
BD is calculated from the sensor signal distributions ac-

quired by the moving robot from time ݐ െ  The .ݐ to ݐ∆
state vector at time ݐ	contains distances and is defined as 
follows: 
 

࢜ ൌ ሾ࢜ଵ,ଶ, ,ଵ,ଷ࢜ ,ଵ,ସ࢜ ,ଵ,ହ࢜ ,ଵ,଺࢜ ,ଶ,ଷ࢜ ,ଶ,ସ࢜  	,ଶ,ହ࢜
,ଶ,଺࢜ ,ଷ,ସ࢜ ,ଷ,ହ࢜ ,ଷ,଺࢜ ,ସ,ହ࢜ ,ସ,଺࢜  ሺ3ሻ												,ࢀହ,଺ሿ࢜

 
where	࢜௜,௝ is	ܦܤ൫݌௜,  ௝൯. In this formulation, when an object݌
is outside the sensing range of a sensor and the distribution 
is 0, the distance between distributions cannot be calculated. 
In such a situation, the distance between the distributions of 
that sensor and other sensors is set to 0. 
 

3.2  Behavior learning by actor–critic method 
This subsection explains behavior learning using rein-

forcement learning [5]. In the reinforcement learning 

framework, a robot learns a suitable state–action mapping 
without prior knowledge of its dynamics or environment. 

 The actor–critic learning method is applied, which is a 
reinforcement learning algorithm that can handle a continu-
ous state and action spaces. This method needs a critic, 
which estimates a reward expectation from a state. It also 
needs an actor as a controller. The actor outputs a motor 
commanding response to the state. 

4 Experimental Result and Discussions 

In this section, I present and discuss the experimental r
esult. The robot executed behavior learning and obtaine
d state–action mapping. After the learning process, the 
sensor signal was artificially transformed and the robot 
can perform a task using the acquired mapping was ver
ified. 
The robot was then placed in the experimental environment 
shown in Fig. 4. 

Fig. 2. Autonomous mobile robot e-puck and its  
infrared distance sensors [1]. 
 

Fig. 3. Proposed state representation using e-puck. 
While a robot moves in time ∆ܯ ,ݐdata are memo-
rized by every sensor. Next, the distances between the 
distributions of each sensor’s data are calculated [1]. 
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Behavior learning was assessed in a wall-following task. 
When all conditions given below were satisfied at time 
t, the reward was defined as follows, 
 

௧ݎ ൌ ௧,଺ݔ െ ௧,ଷݔ ൅ ݉௟ ൅ ݉௥	.																				ሺ4ሻ 
 
Here s୲,଺	and s୲,ଷare signal outputs by sensors 6 and 3, respe
ctively, and ݉௟and ݉௥ are the respective motor comman
ds of the left and right wheel. In this experiment, ∆ݐ 
was set to 1 sec and	ܯ was set to 20. 
The learning time was 10,000 steps (one step = ∆ݐ). The 

robot was placed near the wall at every 500 steps during 
learning. After learning, I confirmed the success of the learn-
ing behavior. Figure 5 shows the obtained reward data for 
the three nonlinear transformations shown below (Equations 
5, 6, and 7). 
 

௧,௜ݔ
′ ൌ ௧,௜ݔ10 െ 5			ሺi ൌ 1,⋯ ,6ሻ																				ሺ5ሻ 

௧,௜ݔ
′ ൌ ඥݔ௧,௜													ሺi ൌ 1,⋯ ,6ሻ																				ሺ6ሻ 

௧,௜ݔ
′ ൌ ௧,௜ݔ

ଶ 																ሺi ൌ 1,⋯ ,6ሻ																				ሺ7ሻ 
 
In this figure, the total rewards accumulated over 200 steps 
are normalized by the total rewards obtained by the robot 
with normal sensor signals. 
The performance of the robot using our proposed state rep-

resentation showed minimal degradation. Note that these 
nonlinear transformations did not correct for physical envi-
ronmental changes. The results indicate that the proposed 
state representation model is applicable to all invertible 
transformations, including nonlinear transformations. 
 

5 Conclusions 

In this study, I applied an actor–critic learning method to 
a mobile robot. The method uses a proposed state represen-
tation based on distances between probability distributions. 
This state representation is insensitive to the environment, 

i.e., sensor signals maintain an identical state even under 
certain environmental changes. A simulation was performed 
and verified that the mobile robot can learn action relation-
ship in the suite state using the actor–critic method. 
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Fig. 5. Normalized rewards.  

 
Fig. 4. Experimental environment. 
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