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Abstract: Extreme climate event, such as heavy rainfall and Typhoon, is anticipated to escalate extreme floods. In fact, many 
flood plains in the Asian-Pacific region have already experienced a rising number of flood disasters. In this circumstance, real-
time flood mapping with automatic detection technique is increasingly important in emergency response efforts. However, 
current mapping technology is still limited in accurately expressing information in flood areas such as inundation depth and 
extent. For this reason, the authors attempt to improve a floodwater detection method with a simple algorithm for a better 
discrimination capacity to discern flood areas from turbid floodwater, mixed vegetation areas, snow, and cloud. In this research, 
pixel classification was performed on the Moderate Resolution Imaging Spectroradiometer (MODIS) time series images (8-day 
composites, MOD09A1, 500-m resolution) for floodwater detection. The purpose of this image classification was to estimate a 
flood area based on the spatial distribution of a nation-wide flood from near real-time MODIS images coupled with a digital 
elevation model (DEM). Moreover, the authors improved the accuracy of the water extent boundary using a 8-direction 
tracking algorithm to find the same level between flood-prone area and non-flood area. The results showed the superiority of 
the developed method in providing instant and accurate flood mapping by using three algorithms, which indicates decision tree, 
modified land surface water index (MLSWI) and 8-direction tracking based on DEM data. 
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1 INTRODUCTION 

Over the last decades, the number of fatalities and the 

scale of economic damage caused by river floods have 

considerably increased worldwide. Moreover, extreme 

rainfall and typhoon are projected to increase the frequency 

and magnitude of river floods in the future, which are likely 

to cause a further increase in flood risk leading to more 

human and economic damage given the current population 

growth and the ongoing accumulation of value assets in 

river deltas. The Asia-Pacific region is particularly 

vulnerable to the impacts of natural disasters [13]. Satellite 

remote sensing is a useful tool for interpretation and 

analyses of water bodies, including floodwater with cost-

effective, accurate monitoring at frequent time steps over 

large areas. Various remote sensing methods have been 

introduced to detect surface water or estimate floodwater 

during flooding while considering floodplain topography [4, 

7, 9, 12]. Flood detection is one of the classical themes of 

satellite-based remote sensing. Despite its usefulness, 

satellite-based remote sensing has also limitations, 

particularly, in spatial coverage and detection of mixed 

floodwater. Gao [3] developed the Normalized Difference 

Water Index (NDWI), a satellite-derived index from near-

infrared (NIR, band 2) and short wave infrared (SWIR, 

band 6) bands: NDWI=(ρ0.85―ρ1.24)/(ρ0.85+ρ1.24), where ρ 

represents the radiance in reflectance units. Both ρ0.85 and 

ρ1.24 are the reflectance at 0.85 μm and 1.24 μm wavelength, 

respectively. NDWI is used to derive water fraction and a 

flood map from MODIS data. Xiao et al. [14, 15] used the 

multi-temporal MODIS images (8-day composites, 

MOD09A1, 500-m resolution) to extend the approach to 

larger regions, south China, South and Southeast Asia. They 

used a relaxed set of criteria, LSWI+0.05 > EVI or 

LSWI+0.05 > NDVI, to identify flooded paddy rice fields. 

The land surface water index (LSWI) is calculated using the 

spectral signals in shortwave infrared (SWIR) and in NIR 

ranges to detect water at the soil surface [4]. 

The purpose of this study was to detect flood areas in 

near real-time accurately and rapidly, based on the spatial 

distribution of nationwide flooding by using an improved 

version of MODIS indices so that mapping the spatial and 

temporal dynamics of flooding is possible. To determine the 

water extent boundary more accurately, the authors improve 

an extraction method of surface water with a simplified 

decision tree method using reflectance of MODIS bands 6 

(CH6) and 7 (CH7) acquired from a regional flooding. The 

improved method was then applied to the Indus River basin 

in Pakistan, which was selected as the prime research focus 

area. The selected area suffered from a huge, severe flood 

caused by abnormally heavy rainfall from late July to early 

August 2010. 
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2 DATA 

2.1 MODIS MYD09A1 
The Moderated Resolution Imaging Spectroradiometer 

(MODIS) is an Earth Observing System (EOS) instrument 

onboard the Terra and Aqua platforms, launched in 

December 1999 and May 2002, respectively. The sensor 

scans ±55° from nadir in 36 spectral bands. During each 

scan, 10 along-track detectors per spectral band 

simultaneously sample the earth. From its polar orbit, 

MODIS provides day-time and night-time global coverage 

every 1 to 2 days [8]. MODIS Surface Reflectance products 

are the estimates of surface spectral reflectance as if they 

were measured at the ground level in the absence of 

atmospheric scattering or absorption. The MODIS L3 8-day 

composite surface reflectance product (MYD09A1) 

provides reflectance values for bands 1-7 from the MODIS 

Level 1B land bands, which are centered at 0.648 μm, 0.858 

μm, 0.470 μm, 0.555 μm, 1.24 μm, 1.64 μm, and 2.13 μm at 

500-meter resolution in a gridded level-3 product in the 

sinusoidal projection [10]. 

2.2 SRTM DEM 
The Shuttle Radar Topography Mission (SRTM) 

obtained elevation data on a near-global scale to generate 

the most complete high-resolution digital topographic 

database model of the Earth. SRTM consisted of a specially 

modified radar system that flew onboard the Space Shuttle 

Endeavour during an 11-day mission in February of 2000. It 

used dual radar antennas to acquire interferometric radar 

data, processed to digital topographic data at 1 arc-sec 

resolution. SRTM is an international project spearheaded by 

the National Geospatial-Intelligence Agency (NGA) and the 

National Aeronautics and Space Administration (NASA) 

[2]. The elevation layers, DEM, are based on a combination 

of the original SRTM-3 and DTED-1 elevation models of 

SRTM. The DEM is provided in geographic projection 

(latitude/longitude) referenced to the WGS84 horizontal 

datum and EGM96 vertical datum. The DEM were acquired 

from Hydrological data and maps based on the SHuttle 

Elevation Derivatives at multiple Scale (HydroSHEDS) [6, 

11]. In this study, DEM is used to calculate potential flood 

areas at 15 arc-second resolution (approximately 500 

meters at the equator). 

 

3 METHODOLOGY 

The proposed three-step process reduces errors in the 

direct extraction of water bodies including floodwater. First 

step is a decision tree method. Second step is the new flood 

index, Modified LSWI (MLSWI). Third step is a 8-

direction tracking algorithm based on DEM, which uses the 

flow direction of the same elevation pixels resulting from 

the previous two steps. 
 

3.1 Decision tree method 
Illustrations Decision tree classification is employed on 

500 m MODIS reflectance images, in which regions of 

interest as samples are collected from each flood case for 

trial, to generate the map by using a post-classification 

water detection process while comparing with SRTM Water 

Body Data (SWBD) product. Decision tree classification 

can be divided into two categories: water surface and dry 

land surface. Water surface areas are considered to be 

permanent water bodies such as rivers, lakes, and ponds 

while dry land areas are considered to be non-water areas 

that are never flooded. A water surface needs to satisfy the 

following three conditions to be extracted as water areas: 

band 7 (CH7) < 10%, band 1 (CH1) +10% > band 2 (CH2) 

and band 3 (CH3) < 20% (e.g., forest = 0.14, clean water = 

0.1, Fig. 1.A). The reflectance of bands 6 and 7 are lower 

than the other bands in the case of surface water such as 

clean water, muddy water, and floodwater, which reflect the 

temporal-spatial pattern of water content (Fig. 1.B). 

 

 
Fig. 1. Spectral reflectance of the land cover classification 

(A) and the characteristic of the turbid water in flooding (B) 

3.2. Modified LSWI 
After examining the water and land pixels using the 

decision tree classification, the flood map is produced based 

on the modified LSWI (MLSWI) by comparing it with 

NDVI, NDWI and LSWI, which are the most frequently 

used and has been proved effective in detecting soil 

moisture, vegetation and water-related objects, though their 

detecting ability is somewhat different depending on their 

characteristics [1, 5]. These indices are calculated as 

follows: 
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where, RRED, RNIR, and RSWIRD are reflectance values of 

MODIS bands 1, 2 and 7. 

 

Compared with the extraction of the floodwater, 

MLSWI was modified and proposed as a new algorithm for 

identifying flood areas by using the combination of NIR 

(841-875 nm, band 2) with SWIR (1 628-1 652 nm, band 7). 

Equation (4) for MLSWI used in this study is as follows:  

SWIRNIR

SWIRNIR

R  R -1

R -  R -1
 MLSWI


Flood

          (4) 

3.3. Tracking algorithm 
After determining floodwater from MLSWI, tracking 

algorithm for calculating the floodwater boundary is 

applied to each pixel as the height difference between 

floodwater area and non-flood area. The floodwater flows 

into the next pixel with the lower DEM among 8-direction 

pixels (Fig. 2.). The relative height of floodwater pixel 

(Floodwater_DEM) indicates the potential flood inundation 

depth of a given target pixel with the accuracy of 1 m. In 

the case of Floodwater_DEM ≧ Non-flood_DEM, Fig. 2 

shows that floodwater area is calculated because it means 

that flooding is expected to occur over such pixels. 

 

Fig. 2. Flood map from the MLSWI and DEM 

algorithm in the Indus river flood case  

 

4 RESULT 

This study focused on the characterization of flood 

index for the flood mapping by using a comprehensive 

approach within a whole basin, solely based on remotely 

sensed data sources via open internet. The pixel-based 

water detection for flood identification using training data, 

and the application in flood area was obtained according to 

the simple index model process with spectral influences 

between land cover types water and land. As a result, the 

MLSWI threshold, the critical value of the reflectance ratio 

was found at 0.5 for detecting water bodies, such as clean 

water, muddy water, and turbid floodwater. On the other 

hand, NDVI, NDWI and LSWI, which usually detect water 

bodies at a critical reflectance ratio of over 0.5, fail to 

distinguish water from dry land in some cases, especially 

when the area contains snow or cloud cover. The process of 

integrated floodwater detection was made possible to 

estimate the water extent boundary using a 8-direction 

tracking algorithm to find the same level between 

floodwater area and non-flood area, because we found 

particularly an underestimation of floodwater pixels 

obtained from MLSWI. Fig. 3 showed the superiority of the 

developed method in providing instant and accurate 

mapping of not only water extent but also indirect flood 

detection for a 2010 extreme event. Flood map was 

generated with 500 m resolution product in Fig. 3.b. On the 

other hand, the permanent water body was marked in Fig. 

3.d. Moreover, the satellite-derived product uncertainties in 

the Indus river basin were verified through ground gauge 

stations by examining actual high water marks and ALOS 

PALSAR images. 

 

 

 
Fig. 3. Flood map from the MLSWI and DEM algorithm in 

the Indus river flood case 
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5 CONCLUSION 

To conclude, the authors suggested to consider the 

spatial resolution in horizontal and vertical directions for 

detecting floodwater. We improved the accuracy of 

detecting flood areas in the Indus River basin from near-

real-time MODIS images of 500 m resolution by using a 

MLSWI and DEM tracking algorithm. Particularly MODIS 

images have a higher practicability to detect water body 

because of moderate-resolution optical sensor (250-500 m) 

and high temporal resolution (daily). It is clear that MLSWI 

is detecting directly floodwater during the period of 

flooding to reduce the ambiguity of floodwater. And 

DEM surface has the effect of the buffer zone at the 

boundary of the flood extent which is typically 1 meter 

vertical resolution in turbid floodwater and mixed 

vegetation areas. Ultimately, this new approach for 

nationwide flood map in this study is expected to play an 

important role to support emergency relief efforts in high-

risk flood areas not only in a national level but also Asia-

Pacific region. 

However, this approach has a limited evaluation of a 

real flood differed from a hydrological inundation 

simulation. In addition, MODIS image is easily affected by 

weather conditions, especially by cloud cover. Also a pixel 

of 500 meter is too coarse to estimate the temporal 

dynamics of flooding at different pixels, the authors are 

planning to improve the spatial resolution in horizontal and 

vertical directions by using the integrated high resolution 

images and self-organizing map (SOM) neural network for 

detection of floodwater area on the land surface. Moreover, 

the combination of SAR and ASTER image should be 

further considered to improve the accuracy of flood 

detection.  
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