
Direct Multivariable PI Controller Tuning 

from Closed-Loop Response Data 
 

 Yoshihiro Matsui
1
, Hideki Ayano

1
, and Kazushi Nakano

2
 

1
Tokyo National College of Technology, Japan 

2
The University of Electro-Communications, Japan 

(Tel/Fax: +81-42-668-5173) 
 

1
matsui@tokyo-ct.ac.jp 

 

Abstract: This paper proposes a PI controller tuning method for multivariable plants. The method requires only one set of the 

input-output transient data of the plant under closed-loop operation to tune the controller. The data is used to obtain an 

appropriate controller parameter by solving a model matching problem of FRIT (Fictitious Reference Iterative Tuning) in time 

domain, and the data is also used in frequency domain to confirm if the parameter tuned by FRIT is stable and if the model 

matching is achieved. The method is applied to a non-interacting control of a gas turbine engine and its effectiveness is shown 

through simulations. 

  

Keywords: CMA-ES, data driven controller tuning, FRIT, non-interacting control 

 

1 INTRODUCTION 

In recent years, in order to save the time and the cost to 

tune controller parameters for industrial systems, some 

direct controller parameter tuning methods from the 

transient data of the plant under closed-loop operation 

without modeling the plant have been proposed. The FRIT 

(Fictitious Reference Iterative Tuning) proposed by Souma 

et al [1] is one of those methods and is expected to be 

applied to some practical applications. However the FRIT 

does not show how to specify the reference model for the 

model matching to tune controller, and the stability of the 

parameter tuned by the FRIT is no clear. This paper shows 

how to resolve the problems using the information of the 

data in frequency domain. The method is applied to a 

controller tuning for a multivariable plant. 

 

2 Controller tuning for multivariable plant 

2.1 Problem setting 

This paper deals with the closed-loop system for 

multivariable plant shown by Fig.1. The system consists of 

a plant given by a 𝑛 × 𝑛 transfer function matrix 𝑷(𝑠) 

and a controller given by a 𝑛 × 𝑛  controller matrix 

𝑲(𝝆, 𝑠) with the controller parameter 𝝆. And 𝒓, 𝒆, 𝒏, 𝒖 

and 𝒚  are the reference vector, the error vector, the 

observation noise vector, the input and the output vectors of 

the plant, respectively. In order to make the explanation 

easier, the closed-loop system for a 2-input 2-output plant 

shown by Fig. 2 is used in the following. 

The controllers of the system are assumed to be PI 

 
 

Fig. 1. Closed-loop system for multivariable plant 

 

 
 

Fig. 2. Closed-loop system for 2-input 2-output plant 

 

controllers given by (1)~(4).  

 

𝐾11(𝑠) = 𝑘11
𝜏11𝑠 + 1

𝜏11𝑠
 (1) 

 

𝐾12(𝑠) = 𝑘12
𝜏12𝑠 + 1

𝜏12𝑠
 (2) 

 

𝐾21(𝑠) = 𝑘21
𝜏21𝑠 + 1

𝜏21𝑠
 (3) 

 

𝐾22(𝑠) = 𝑘22
𝜏22𝑠 + 1

𝜏22𝑠
 (4) 

 

The controller matrix consists of (1)~(4) is given by 

𝑲(𝝆, 𝑠) = (
𝐾11(𝑠) 𝐾12(𝑠)

𝐾21(𝑠) 𝐾22(𝑠)
) . (5) 

𝒚𝑲(𝝆, 𝑠) 𝑷(𝑠)
𝒖
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The proportional gains and the integral time constants of 

the PI controllers are defined as the controller parameter 𝝆 

given by 

 

𝝆 = (𝑘11, 𝑘21, 𝑘12, 𝑘22, 𝜏11, 𝜏21, 𝜏12, 𝜏22). (6) 

 

The goal of this problem is to find the controller 

parameter such that a non-interacting control with stability 

is achieved. To achieve this, the loop transfer function 

matrix 𝑷(𝑠)𝑲(𝝆, 𝑠) must be a diagonal matrix for non-

interacting control and its diagonal elements must have 

appropriate gain crossover frequencies to satisfy the 

Nyquist stable criterion. Let us assume 𝑳∗(𝑠) given by (7) 

to be one of such the loop transfer function matrix. 

 

𝑳∗(𝑠) = diag[𝐿11
∗ (𝑠), 𝐿22

∗ (𝑠)] (7) 

    

If 𝑷(𝑠)𝑲(𝝆, 𝑠) becomes 𝑳∗(𝑠) by 𝝆 = 𝝆∗,  the transfer 

function matrix from 𝒓 to 𝒚 of the closed-loop system is 

 

𝑻∗(𝑠) = diag[𝑇11
∗ (𝑠), 𝑇22

∗ (𝑠)] , (8) 

where 

𝑇11
∗ (𝑠) =

𝐿11
∗ (𝑠)

1 + 𝐿11
∗ (𝑠)

 (9) 

and 

𝑇22
∗ (𝑠) =

𝐿22
∗ (𝑠)

1 + 𝐿22
∗ (𝑠)

 . (10) 

 

Therefore, the solution of this problem is to find 𝝆∗  such 

that 𝑷(𝑠)𝑲(𝝆∗, 𝑠) is as similar to 𝑳∗(𝑠) as possible. 

 

2.2 Controller tuning by FRIT 

In order to find 𝝆∗, the FRIT  is employed. The FRIT 

requires only one set of input-output transient data of the 

plant under closed-loop operation. The fictitious reference   

𝒓̃(𝑡) = ( ̃1(𝑡),  ̃2(𝑡))
𝑇  given by (11) is used to find 𝝆∗ 

without additional experiments. 

       

𝒓̃(𝑡) = 𝒆̃(𝑡) + 𝒚0(𝑡), (11) 

 

where 𝒆̃(𝑡) = ( ̃1(𝑡),  ̃2(𝑡))
𝑇  is the fictitious error and 

given by 

 

𝒆̃(𝑡) = 𝑲−1(𝝆, 𝑡) ∗ 𝒖0(𝑡) .  (12) 

 

𝑲−1(𝝆, 𝑡)  shows the impulse response of the inverse 

matrix of the controller transfer function matrix 𝑲(𝝆, 𝑠). 

As (11) and (12) show, the fictitious reference 𝒓̃(𝑡) and 

the fictitious error 𝒆̃(𝑡) can be obtained only from the 

input data 𝒖0(𝑡) = ( 10(𝑡),  20(𝑡))
𝑇  and the output data 

𝒚0(𝑡) = ( 10(𝑡),  20(𝑡))
𝑇 of the plant in the closed-loop 

system with the initial controller parameter 𝝆𝟎. 

The parameter 𝝆∗ which makes the transfer function 

matrix from 𝒓 to 𝒚 of the closed-loop system be similar 

to 𝑻∗(𝑠) can be obtained by (13) and (14) using some non-

linear optimization methods.  

 

𝝆∗ =  arg min
𝝆

∑𝜺𝑇(𝝆, 𝑡)

𝑁−1

𝑡

𝜺(𝝆, 𝑡) (13) 

 

𝜺(𝝆, 𝑡) = 𝑾(𝑡){𝒚0(𝑡)  𝑻
∗(𝑡) ∗ 𝒓̃(𝑡)} (14) 

 

Here, 𝑁 is the data length of the input-output data, 𝑾(𝑠) 

is a weighting function diagonal matrix which specifies the 

frequency band to emphasis the error vector of the model 

matching 𝒚0(𝑡)  𝑻
∗(𝑡) ∗ 𝒓̃(𝑡)  for searching 𝝆∗ , and 

𝑾(𝑡) and 𝑻∗(𝑡) are the impulse responses of 𝑾(𝑠) and 

𝑻∗(𝑠), respectively. 

 

2.3 Confirmation in frequency domain 

It is difficult to specify 𝑻∗(𝑠) or 𝑳∗(𝑠) for unknown 

𝑷(𝑠). Therefore the information in frequency domain of  

𝒖0(𝑡) and 𝒚0(𝑡) is also used.  

When 𝒖(𝑡) = 𝒖0(𝑡)  and 𝒚(𝑡) = 𝒚0(𝑡)  and 𝒏=0 in 

Fig.1, (15) holds in frequency domain. 

 

𝒚0(𝑗𝜔) = 𝑷(𝑗𝜔)𝒖0(𝑗𝜔) 
              = 𝑳(𝝆, 𝑗𝜔)𝒆̃(𝑗𝜔),  

(15) 

where 

𝑳(𝝆, 𝑗𝜔) = 𝑷(𝑠)𝑲(𝝆, 𝑗𝜔) 

                 = (
𝐿11(𝝆, 𝑗𝜔) 𝐿12(𝝆, 𝑗𝜔)

𝐿21(𝝆, 𝑗𝜔) 𝐿22(𝝆, 𝑗𝜔)
) . 

(16) 

 

From (15) and (16), (17) and (18) are derived. 

 

 10(𝑗𝜔)

 ̃1(𝑗𝜔)
= 𝐿11(𝝆, 𝑗𝜔) + 𝐿12(𝝆, 𝑗𝜔)

 ̃2(𝑗𝜔)

 ̃1(𝑗𝜔)
 (17) 

 

 20(𝑗𝜔)

 ̃2(𝑗𝜔)
= 𝐿22(𝝆, 𝑗𝜔) + 𝐿21(𝝆, 𝑗𝜔)

 ̃1(𝑗𝜔)

 ̃2(𝑗𝜔)
 (18) 

 

Therefore if we can estimate  10(𝑗𝜔)/ ̃1(𝑗𝜔)  and 

 20(𝑗𝜔)/ ̃2(𝑗𝜔)  with 𝝆 = 𝝆∗ , and compare them to 

𝐿11
∗ (𝑗𝜔) and 𝐿22

∗ (𝑗𝜔), respectively, we can investigate to 

see if 𝐿11(𝝆
∗, 𝑗𝜔) ≃ 𝐿11

∗ (𝑗𝜔) ,  𝐿12(𝝆
∗, 𝑗𝜔) ≃ 0 , 

𝐿22(𝝆
∗, 𝑗𝜔) ≃ 𝐿22

∗ (𝑗𝜔)  and 𝐿21(𝝆
∗, 𝑗𝜔) ≃ 0 . However 

 01(𝑗𝜔)/ ̃1(𝑗𝜔)  and  02(𝑗𝜔)/ ̃2(𝑗𝜔)  cannot be 

estimated from  10(𝑗𝜔) ,  ̃1(𝑗𝜔) ,  20(𝑗𝜔)  and  ̃2(𝑗𝜔) 

directly since  10(𝑡) ,  ̃1(𝑡) ,  20(𝑡)  and  ̃2(𝑡)  are not 
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absolute integrable and the Fourier transform cannot be 

applied to them. To resolve the problem, a band pass filter 

proposed by Matsui et al [2] is introduced. The filter is 

given by 

 

𝐹(𝑠) =
100𝑇𝑠𝑠

(100𝑇𝑠𝑠 + 1)(10𝑇𝑠𝑠 + 1)
  , (19) 

 

where 𝑇𝑠  is the sampling period for 𝒖0(𝑡)  and 𝒚0(𝑡) . 

The filter and a correlation method are used for the 

estimation. The estimated frequency responses of 

 10(𝑗𝜔)/ ̃1(𝑗𝜔)  and  20(𝑗𝜔)/ ̃2(𝑗𝜔)  are defined as 

𝐿̂11(𝝆, 𝑗𝜔) and 𝐿̂22(𝝆, 𝑗𝜔), and are estimated by (20) and 

(21), respectively. 

 

𝐿̂11(𝝆, 𝑗𝜔) =
𝐹[𝑅𝑦𝑒1(𝑡)]

𝐹[𝑅𝑒𝑒1(𝑡)]
 (20) 

 

𝐿̂22(𝝆, 𝑗𝜔) =
𝐹[𝑅𝑦𝑒2(𝑡)]

𝐹[𝑅𝑒𝑒2(𝑡)]
 (21) 

 

Here, 𝐹[∙]  denotes the Fourier transform, 𝑅𝑦𝑒1(𝑡)  and  

𝑅𝑦𝑒2(𝑡)  are the cross-correlations, and 𝑅𝑒𝑒1(𝑡)  and  

𝑅𝑒𝑒2(𝑡)  are the autocorrelations. The correlations are 

calculated as shown in (22)~(25) using  10𝑓(𝑡),  20𝑓(𝑡), 

 ̃1𝑓(𝑡) and  ̃2𝑓(𝑡) which are all filtered  10(𝑡),  20(𝑡), 

 ̃1(𝑡) and  ̃2(𝑡) by 𝐹(𝑠), respectively. 

 

𝑅𝑦𝑒1(𝑡) = ∑  10𝑓(𝜏) ̃1𝑓(𝜏 + 𝑁  1  𝑡)

𝑁−1

𝜏=0

 (22) 

 

𝑅𝑦𝑒2(𝑡) = ∑  20𝑓(𝜏) ̃2𝑓(𝜏 + 𝑁  1  𝑡)

𝑁−1

𝜏=0

 (23) 

 

𝑅𝑒𝑒1(𝑡) = ∑  ̃1𝑓(𝜏) ̃1𝑓(𝜏 + 𝑁  1  𝑡)

𝑁−1

𝜏=0

 (24) 

 

𝑅𝑒𝑒2(𝑡) = ∑  ̃2𝑓(𝜏) ̃2𝑓(𝜏 + 𝑁  1  𝑡)

𝑁−1

𝜏=0

 (25) 

 

3 Numerical example 

The LV100, which is taken from Hjalmarsson [3], is a 

gas turbine engine modeled as a continuous-time linear 

system with five state variables, two inputs and two outputs. 

The state variables are the gas generator spool speed, the 

power output, the temperature, the fuel flow and the 

variable area turbine nozzle. The inputs are the forth and 

the fifth state variables. The outputs are the first and the 

third state variables. The state matrix 𝑨𝑝, the input matrix 

𝑩𝑝 and the output matrix 𝑪𝑝 are given by (26), (27) and 

(28), respectively.  

 

𝑨𝑝 =

(

 
 

 1.4122  0.0552
0.0927  0.1133
 7.8467  0.2555

0 0
0 0

  

0 42.9536 6.3087
0 4.2204  0.7581

 3.333 300.4167  4.4894
0  25.00 0
0 0  33.3333)

 
 

 
 

(26) 

 

𝑩𝑝 = (
0 0 0 1 0
0 0 0 0 1

)
𝑇

 (27) 

 

𝑪𝑝 = (
1 0 0 0 0
0 0 1 0 0

) (28) 

 

The input-output transient data sets of the plant to find 

𝝆∗ were obtained in the simulation for the step reference 

response of the closed-loop system with 𝝆𝟎 given by (29), 

and the data sets were saved as 𝒖0(𝑡)  and 𝒚0(𝑡) , 

respectively. The observation noises 𝑛1  and 𝑛2  which 

were white and independent each other were added in the 

simulation, and their means and variances were 0 and 

0.0025, respectively.  Fig. 3 shows 𝒚0(𝑡).  

 

𝝆𝟎 = (1, 0.1,  1,1, 10, 10, 10, 10) (29) 

 

The reference model for the FRIT was given by  

 

𝑇11
∗ (𝑠) = 𝑇22

∗ (𝑠) =
1

𝑇𝑑
2𝑠2 + 2𝜁𝑑𝑇𝑑𝑠 + 1

 ,  (30) 

where 𝑇𝑑 = 0.1 and 𝜁𝑑 = 0.7. Then  

 

𝐿11
∗ (𝑠) = 𝐿22

∗ (𝑠) =
1

𝑇𝑑
2𝑠2 + 2𝜁𝑑𝑇𝑑𝑠

 . (31) 

 

The diagonal elements of 𝑾(𝑠) were given by 

 

𝑊11(𝑠) = 𝑊22(𝑠) =
1

𝑇𝑤
2𝑠2 + 2𝜁𝑤𝑇𝑤𝑠 + 1

 ,  (32) 

where 𝑇𝑤 = 0.05 and 𝜁𝑤 = 0.7.  

The parameter to achieve the model matching of (13) 

was obtained by the CMA-ES proposed by Hansen N [4] as 

given by 

 

𝝆∗ = (0.434, 0.449, 33.3,  4.59, 
                     0.0935, 0.254, 3.70, 0.295) . 

(33) 
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Figs. 4 and 5 show that although the estimated 

frequency responses of 𝐿̂11(𝝆
∗, 𝑗𝜔) and 𝐿̂22(𝝆

∗, 𝑗𝜔) are 

contaminated by the noises at the high frequencies, they are 

very close to the true loop transfer functions 𝐿11
∗ (𝑠) and 

𝐿22(𝝆
∗, 𝑠) , they are similar to the specified reference 

 

Fig. 3. Step reference responses with 𝝆𝟎 

 

 

Fig. 4. Bode plots of 𝐿̂11(𝝆
∗, 𝑗𝜔), 𝐿11

∗ (𝑠) and 𝐿11(𝝆
∗, 𝑠) 

 

 
Fig. 5. Bode plots of 𝐿̂22(𝝆

∗, 𝑗𝜔), 𝐿22
∗ (𝑠) and 𝐿22(𝝆

∗, 𝑠) 

transfer functions 𝐿11
∗ (𝑠) and 𝐿22

∗ (𝑠)  at the frequencies 

less than the gain crossover frequencies, respectively, and 

they have enough phase margins. Therefore the reference 

models for the model matching and  𝝆∗ were considered 

to be chosen and tuned appropriately, respectively. Fig.6 

shows that the step reference responses were improved 

significantly and a non-interacting control of  1(𝑡) and 

 2(𝑡) was achieved by 𝝆∗. 
 

 

Fig. 6. Step reference responses with 𝝆∗ 
 

4 CONCLUSION 

A method to improve the weakness of the FRIT using 

the information of the experimental data in frequency 

domain was proposed. The method is able to show that the 

adequacy of the reference model for the model matching of 

the FRIT and the stability of the controller tuned by the 

FRIT. The effectiveness of the method was shown by a 

numerical example of a controller tuning for a multivariable 

system. 
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