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Abstract: This paper focuses on analysis and synthesis methods of continuous-time dynamic quantizers for LFT type
quantized feedback systems. Our aim is to find multiple (decentralized) quantizers such that a given linear system is
optimally approximated by the given linear system with the quantizer in terms of invariant set analysis. In the case of
minimum phase systems, this paper clarifies that optimal dynamic quantizers and its performance are parameterized by a
design parameter. Also, an analytical relation between the static and dynamic quantizers will be presented.
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1. INTRODUCTION

The cyber-physical system connects the physical sys-
tems with the information systems. In the research field
of control theory, the control problem of such the system
is one of the most active topics since the system covers
various systems including discrete-valued-signals such as
networked systems, hybrid systems, embed devices with
D/A-A/D converters [1]. For the above challenging prob-
lem, it is important to focus on optimality of systems
controlled by the discrete-valued signals. There clearly
exits a difference between control performances of the
systems controlled by the continuous-valued signal and
the discrete-valued signal. Motivated by this, this paper
focuses on the quantized feedback systems including the
discrete-valued signals.

Considering optimality of quantized feedback sys-
tems, some existing results have provided optimal dy-
namic quantizers for the following problem formulation:
When a plant and a controller are given in the usual feed-
back system, the framework synthesizes a dynamic quan-
tizer that minimizes the maximum output difference be-
tween before and after the quantizer insert. In this case,
the quantized feedback system with such the quantizer
optimally approximates the original feedback system in
the sense of the input-output relation. The two main types
of dynamic quantizer are discrete-time and continuous-
time settings. A number of the dynamic quantizer studies
have been done in the discrete-time setting [2-5]. On the
other hand, continuous-time dynamic quantizer is a key
device for recent broadband wireless communication and
mobile systems because of lower power and longer bat-
tery life compared with discrete-time ones [6]. Also, it
is natural to consider the continuous-time setting in the
sense that model uncertainty expressed in continuous-
time domain is suitable for robust control of physical
model.

Motivated by the above, this paper considers a
continuous-time dynamic quantizer design for quantized
feedback systems. In particular, we consider the LFT
(linear fractional transformation) type quantizer feedback
system. Our early work has provides an optimal dynamic

quantizer which is applicable for the centralized control
system. Since the sensors and actuators are distributed in
the networked control system, it is natural to implement
multiple (decentralized) quantizers rather than a central-
ized quantizer for the I/O quantized feedback system. Fo-
cusing on the LFT type system that covers various quan-
tized feedback systems, we will provide extension results
of our early work [7]. As space is limited, this paper con-
centrates on the minimum phase case. We will clarify the
effectiveness and the limitation of our proposed quantiz-
ers. In the case of minimum phase systems, it is clarified
that optimal dynamic quantizers and its performance are
parameterized by a design parameter.

Notation: The set ofn × m (positive) real matrices
is denoted byIRn×m (IRn×m

+ ). The set ofn× (positive)
integer matrices is denoted byINn×m (INn×m

+ ). 0n×m

andIm (or for simplicity of notation,0 andI) denote the
n×m zero matrix and them×m identity matrix, respec-
tively. For a matrixM ,MT, λ(M), λi(M) andλmax(M)
denote its transpose, its eigenvalue set, theith element of
the setλ(M) and its maximum eigenvalue, respectively.
For a numbern ∈ IN+, n! denotes its factorial. For a
complex numberc, Re(c) is its real part. For a vectorx,
xi is theith entry ofx. For a symmetric matrixX,X > 0
(X ≥ 0) means thatX is positive (semi) definite. For a
full row rank matrixM , M† denotes its pseudo inverse
matrix which is given byM† = MT(MMT)−1. For a
matrixX, ∥X∥2 denotes its2-norms. Finally, we use the

“packed” notation:

(
A B
C D

)
:= C(sI−A)−1B+D.

2. PROBLEM FORMULATION

Consider the quantized feedback system which con-
sists of the LTI continuous-time plantP (s) with the state
xp ∈ IRnp , the LTI continuous-time controllerC(s)
with the statexc ∈ IRnc , and the dynamic quantizers
v1 = Qd1(u1), v2 = Qd2(u2). The systemsP (s) and
C(s) are given by[
zp
u2

]
=

 Ap Bp

Cp1 0
Cp2 0

 v1, u1 =

(
Ac Bc1 Bc2

Cc Dc1 Dc2

) [
v2
r

]
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(a) LFT type quantizedfeedback

system with multiple quantizers

(b) Usual feedback system

Fig. 1. Generalized quantized and unquantized systems

wherezp ∈ IRq, r ∈ IRp, u1 ∈ IRm1 , u2 ∈ IRm2 ,
v1 ∈ IRm1 , andv2 ∈ IRm2 denote the measured out-
put, the exogenous input, the controller output, the plant
measured output, the plant input, and the controller in-
put, respectively. The continuous-valued signalsu1 and
u2 are quantized into the discrete-valued signalsv1 and
v2 because ofv1 = Qd1

(u1) andv2 = Qd2
(u2). For

the above systems, define the following vectors:xg :=
[ xT

p xT
c ]T ∈ IRng (ng := np + nc), u := [ uT

1 uT
2 ]T,

v := [ vT
1 vT

2 ]T, and matrices:

A :=

[
Ap 0
0 Ac

]
, B1 :=

[
0
Bc2

]
, B2 :=

[
Bp 0
0 Bc1

]
,

C1 :=
[
Cp1 0

]
, D11 := 0, C2 :=

[
0 Cc

Cp2 0

]
,

D21 :=

[
Dc2

0

]
, D22 :=

[
0 Dc1

0 0

]
,

and the quantizerQd = diag(Qd1 , Qd2). In this case,
one gets the linear fractional transformation (LFT) type
quantized feedback system inFig. 1 (a) where the LTI
continuous-time generalized plantG(s) with the state
xg ∈ IRng is represented by ẋg
zp
y

=

 A B1 B2

C1 D11 0
C2 D21 D22

 xg
r
v

 . (1)

As shown above, the LFT formulation in (1) covers the
various systems. Then this paper considers the LFT type
quantized feedback systems. Also, we assume that the
matrixA+B2(I−D22)

−1C2 is Hurwitz, that is, the usual
feedback system inFig. 1 (b) is stable in the continuous-
time domain.

For the systemG(s), we define the discrete-valued
vectorv := [ vT

1 , ..., v
T
s ]T ∈ IRm and the continuous-

valued vectoru := [ uT
1, ..., u

T
s ]T ∈ IRm, respec-

tively, and consider the dynamic quantizerv = Qd(u)
which consists of the multiple dynamic quantizersvi =
Qdi(ui) (i = 1, ..., s) with the state vectorxqi ∈
IRnqi . The cases > 1 implies that the multiple dy-
namic quantizersQdi are distributedly implemented. The
sub-quantizerQdi consists of the static quantizerqst :
IRmi → dINmi with the quantization intervald ∈ IR+,

Fig. 2. Midtreadtype quantization

i.e.,

vi = qst(uqi), uqi := vqi + ui

and the dynamic compensatorQi(s) given by[
ẋqi
vqi

]
=

[
Aqi Bqi

Cqi 0

] [
xqi
eqi

]
, eqi := vi − ui

wherevi ∈ IRmi , ui ∈ IRmi , andvqi ∈ IRmi . Fors = 2,
one gets the i/o type dynamic quantizers. Then the quan-
tizerQd := diag(Qd1, ..., Qds) is realized by the static
quantizerQst := [qT

st, .., q
T
st]

T : IRm → dINm, i.e.,

v = Qst(uq), uq := vq + u (2)

and the compensatorQ(s) := diag(Q1(s), ..., Qs(s)),
i.e.,[
ẋq
vq

]
=

[
Aq Bq

Cq 0

] [
xq
eq

]
, (3)

Aq := diag(Aq1, ..., Aqs), Bq := diag(Bq1, ..., Bqs),

Cq := diag(Cq1, ..., Cqs)

where xq := [ xT
q1, ..., x

T
qs ]T ∈ IRnq , vq :=

[ vT
q1, ..., v

T
qs ]T ∈ IRm, uq := [ uT

q1, ..., u
T
qs ]T ∈ IRm

and eq := [ eT
q1, ..., e

T
qs ]T ∈ IRm. Note thatqst is of

the nearest-neighbor type toward−∞ with the quanti-
zation intervald ∈ IR+ and the initial state is given
by xq(0) = 0 for the drift-free ofQd[2, 3] such as the
midtread type quantizer inFig. 2.

For the LFT system withG(s) andQd in Fig. 1 (a)
with the initial statex0 = xg(0) and the exogenous sig-
nal r ∈ Lp

∞, zp(t, x0, r) denotes the output ofzp at the
time t. Also, for the system inFig. 1 (b) without Qd,
z∗p(t, x0, r) denotes its output at the timet. This paper
considers the following cost function:

J(Qd) := sup
(x0,r)∈IRng×Lp

∞

z(x0, r)

where

z(x0, r) := max
i

sup
t

|zpi(t, x0, r)− z∗pi(t, x0, r)|

andzpi, z∗pi denote theith entry ofzp andz∗p , respectively.
If the quantizerQd minimizesJ(Qd), the system in

Fig. 1 (a) optimally approximates the usual system in
Fig. 1 (b) in the sense of the input-output relation. In this
case, we can use the existing continuous-time controller
design methods for the system inFig. 1 (b).

Motivated by the above, our objective is to solve the
following continuous-time dynamic quantizer synthesis
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problem (E): For the LFT system composed of (1), (2)
and (3) with the initial statex0 ∈ IRng and the exogenous
signal r ∈ Lp

∞, suppose that the quantization interval
d ∈ IR+ and the performance levelγ ∈ IR+ are given.
Characterize a stable continuous-time dynamic quantizer
Qd (i.e., find parameters(nqi, Aqi, Bqi, Cqi)) achieving
J(Qd) ≤ γ.

3. MAIN RESULT

Define the following matrices:

D := (I −D22)
−1, C := DC2, A :=A+B2C,

B := B2D, A :=

[
A BCq

0 Aq +BqCq

]
, B :=

[
B
Bq

]
,

C :=
[
C1 0

]
.

For the matrixB ∈ IRng×m and i = 1, ..., s, Bi ∈
IRng×mi denotes theith block column ofB, i.e., B :=
[ B1, ...,Bs ].

Assumption 1: For everyi = 1, ..., s, the matrix
C1A

τiBi is full row rank whereτi ∈ {0} ∪ IN+ is the
smallest integer satisfyingC1A

τiBi ̸= 0.
In quantizer analysis, by using our early result [7], we

obtain the the optimization problem(Aop):

min
P>0,mini{|Re(2λi(A))|}>α>0,γ>0

γ s.t.[
ATP+ PA+ αP PB

BTP − 4α
md2 Im

]
≤ 0, (4)[

P CT

C γ2Iq

]
≥ 0. (5)

That is, the performance levelγ in (5) evaluates the
upperbound of the difference betweenz∗p(t, x0, r) and
zp(t, x0, r) within in invariant set framework, and

J(Qd) ≤ γ

holds. Also, the infimum ofγ can be expressed by the
following lemma [7].

Lemma 1: Suppose that the quantization intervald ∈
IR+ is given. Consider the problem(Aop). The infimum
of γ is given by

inf γ = inf
α

d
√
m

2
√
α

√
λmaxD(α), (6)

D(α) :=

∫ ∞

0

Ce(A+α/2I )tBBTe(A+α/2I )TtCTdt,

α ∈ (0,min
i
{|Re(2λi(A))|}).

The problem(Aop) suggests that the quantizer syn-
thesis problem(E) reduces to the following non-convex
optimization problem(OP):

min
P>0,Aq,Bq,Cq,ᾱ>α>0,γ>0

γ s.t. (4) and (5)

whereᾱ := mini{|Re(2λi(A))|}. That is, if (OP) is
feasible,(E) is feasible and the obtained quantizer is sta-
ble. Under some circumstances, we obtain an closed form
solution from (6) as follow.

Theorem 1: Consider the non-convex optimization
problem (OP). Suppose thats > 1 and Assumption 1

holds. For a given scalarf ∈ IR+, an optimal solution
of (nqi, Aqi, Bqi, Cqi) (i = 1, 2, ..., s) and its infimum of
γ ∈ IR+ to the problem(OP) are given by{
nqi = ng, Aq = A, Bqi = Bi

Cqi = −(C1A
τiBi)

†C1(A+ fI)τi+1 (7)

for everyi = 1, 2, ...., s and

inf γ =
d
√
m

2
√
ρ
∥ [ σρ1 . . . σρi . . . σρs ] ∥2, (8)

σρi :=

√
(2τi)!

(τi!)2(2f − ρ)2τi+1
C1A

τiBi,

ρ = min
i
{|Re(2λi(A))|, |Re(2λi(Aq +BqCq))|}

if the matrixAqi + BqiCqi defined in (7) is Hurwitz for
everyi = 1, 2, ..., s.

In this paper, we call the quantizer in (7) the decen-
tralized optimal dynamic quantizerQop

d . Theorem 1 indi-
cates thatQop

d and its achievable performance are param-
eterized by the scalarf . Next, this paper considers the
relation between the scalarf and the stability ofQop

d for
the simple caseq = m, in addition, presents a tractable
adjustable range off similar to [7]. For the simplicity, we
consider the centralized quantizer cases = 1 andτi = τ .

(a) QuantizerQd with Qe(s)

(b) QuantizerQd with Qeq(s)

Fig. 3. Equivalent expression of dynamic quantizerQd

As shown inFig. 3 (a), an equivalent expression of the
quantizerQd is given by the quantization errorQe and
Qe(s) := Cq(sI − (Aq + BqCq))

−1Bq. The quantizer
structure inFig. 3 (a) can be recast as the system with
Qeq(s) := Qe(s) + I in Fig. 3 (b) where the signale is
the differencee := v − uq andeq = vq + e. For the
quantizerQop

d , then one gets

Qop
eq(s) :=

(
(A− B(C1A

τB)−1C1(A+ fI)τ+1 B
−(C1A

τB)−1C1(A+ fI)τ+1 I

)
which is correspondingto the compensatorQeq(s) in
Fig. 3 (b). The inverse system ofQop

eq(s) is given by

Q̃op
ep(s) =

∞∑
k=0

(
(C1A

τB)−1C1(A+ fI)τ+1AkB

sk+1

)
+ I

= (C1A
τB)−1(s+ f)τGe(s)

whereGe(s) := C1(sI − A)−1B. Then we obtain the
stability condition ofQop

d .
Theorem 2: The following statements hold. (i) The

transmission poles ofQop
eq(s) consist of both “−f” and

the transmission zeros ofGe(s). (ii) The optimal dynamic
quantizerQop

d in (7) is stable if and only if the all trans-
mission zeros ofGe(s) are stable (i.e., the systemG(s) is
minimum phase).
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Denote byβmax(δmax) the maximum real part of the
stable transmission poles (zeros) for the systemGe(s).
From the statement(i) of Theorem 2, one gets the range
of f as follows:

f > min{|βmax|, |δmax|}.

Also, the following theorem derived from (6) in Lemma
1 and (8) in Theorem 1 provides an analytical relation
between the quantizersQd andQst in the continuous-
time domain.

Theorem 3: Consider the problem(OP) and de-
note byγst andγd upper bounds ofJ(Qst) andJ(Qd),
respectively. In the case ofng = 1,

inf
γd
γst

=

√
|A|√
f
, f > |A| (9)

holds.
Since the matrixA is stable,A < 0 holds in (9). Theo-

rem 3 guarantees that the scalarf of the quantizerQd im-
provesJ(Qd) compared with the quantizerQst in terms
of the infimum of the upper bound ratio of the cost func-
tions. Then the larger value the scalarf is set to be, the
better approximation the quantizerQop

d achieves between
the minimum phase systems inFigs. 1 (a)and(b).

0 2 4 6 8 10
−10

0

10

u 1(t
) 

an
d 

v 1(t
)

0 2 4 6 8 10
−10

0

10

u 2(t
) 

an
d 

v 2(t
)

0 2 4 6 8 10

−10

0

10

time t [s]

z p(t
)

Fig. 4. Time responses withQd

Consider the decentralized I/O quantizer system. The
plantP (s) is the unstable minimum phase LTI system:[
ẋp
u2

]
=

 0 1 0
−2 1 −2
4 1 0

[
xp
v1

]
, zp = u2.

Its eigenvalues are0.5±0.866i and its zero is{−2}. The
stabilizing controllerC(s) is given by[
ẋc
u1

]
=

[
−3 1
−1 1

] [
xc
v2

]
.

The resultantzeros ofGe(s) are−3 and−4. For the
quantizerQop

d in (7), we setd = 10 andf = 10. The
performance isinf γ = 4.23. Fig. 4 shows the time re-
sponses ofu1(t), u2(t), v1(t), v2(t) and zp(t) for the
dynamic quantizer in Theorem 1 with the initial state
xg(0) = [ −4 0 −1 ]T. The thin lines and the thick lines
illustrate the time responses of the usual feedback system
in Fig. 1 (b) and the quantized feedback system inFig. 1
(a), respectively. The controlled outputzp of the dynamic
quantizer does not go to zero. However, we see that the
controlled output ofFig. 1 (a)approximates that ofFig. 1
(b) even if the discrete-valued signalsv1 ∈ {−10, 0, 10}
andv2 ∈ {−10, 0, 10} are applied. Not that the larger
value off not only provides the better approximation per-
formance, but also switches the outputsv1 andv2, more
quickly.

4. CONCLUSION

Focusing on continuous-time LFT type quantized
feedback systems, we have proposed the continuous-
time dynamic quantizer analysis and synthesis condi-
tions. This paper has concentrated on the case of mini-
mum phase systems, clarified that optimal dynamic quan-
tizers and their performance are parameterized by the de-
sign parameter. Also, an analytical relation between the
static and dynamic quantizers has been presented. Fi-
nally, it has been pointed out that the proposed method
is helpful through the numerical example.
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