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Abstract: This paper focuses on analysis and synthesis methods of continuous-time dynamic quantizers for LFT type
quantized feedback systems. Our aim is to find multiple (decentralized) quantizers such that a given linear system is
optimally approximated by the given linear system with the quantizer in terms of invariant set analysis. In the case of
minimum phase systems, this paper clarifies that optimal dynamic quantizers and its performance are parameterized by a
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design parameter. Also, an analytical relation between the static and dynamic quantizers will be presented.
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1. INTRODUCTION

The cyber-physical system connects the physical sys-
tems with the information systems. In the research field
of control theory, the control problem of such the system
is one of the most active topics since the system covers
various systems including discrete-valued-signals such as
networked systems, hybrid systems, embed devices with
D/A-A/D converters [1]. For the above challenging prob-
lem, it is important to focus on optimality of systems
controlled by the discrete-valued signals. There clearly
exits a difference between control performances of the
systems controlled by the continuous-valued signal and
the discrete-valued signal. Motivated by this, this paper
focuses on the quantized feedback systems including the
discrete-valued signals.

Considering optimality of quantized feedback sys-
tems, some existing results have provided optimal dy-
namic quantizers for the following problem formulation:
When a plant and a controller are given in the usual feed-
back system, the framework synthesizes a dynamic quan-
tizer that minimizes the maximum output difference be-
tween before and after the quantizer insert. In this case,
the quantized feedback system with such the quantizer
optimally approximates the original feedback system in
the sense of the input-output relation. The two main types
of dynamic quantizer are discrete-time and continuous-
time settings. A number of the dynamic quantizer studies
have been done in the discrete-time setting [2-5]. On the
other hand, continuous-time dynamic quantizer is a key
device for recent broadband wireless communication and
mobile systems because of lower power and longer bat-
tery life compared with discrete-time ones [6]. Also, it
is natural to consider the continuous-time setting in the
sense that model uncertainty expressed in continuous-
time domain is suitable for robust control of physical
model.

Motivated by the above, this paper considers a
continuous-time dynamic quantizer design for quantized
feedback systems. In particular, we consider the LFT
(linear fractional transformation) type quantizer feedback
system. Our early work has provides an optimal dynamic
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guantizer which is applicable for the centralized control
system. Since the sensors and actuators are distributed in
the networked control system, it is natural to implement
multiple (decentralized) quantizers rather than a central-
ized quantizer for the 1/0 quantized feedback system. Fo-
cusing on the LFT type system that covers various quan-
tized feedback systems, we will provide extension results
of our early work [7]. As space is limited, this paper con-
centrates on the minimum phase case. We will clarify the
effectiveness and the limitation of our proposed quantiz-
ers. In the case of minimum phase systems, it is clarified
that optimal dynamic quantizers and its performance are
parameterized by a design parameter.

Notation: The set ofn x m (positive) real matrices
is denoted byR™*™ (IR’}*™). The set ofax (positive)
integer matrices is denoted BY" "™ (IN*™). Opxim
andI,, (or for simplicity of notation) andI) denote the
n X m zero matrix and the: x m identity matrix, respec-
tively. For amatrix/, M, \(M), X\;(M) andpax (M)
denote its transpose, its eigenvalue set;thelement of
the set\(M) and its maximum eigenvalue, respectively.
For a numbem € IN,, n! denotes its factorial. For a
complex number, Re(c) is its real part. For a vectar,
x; is thei?” entry ofz. For a symmetric matrix’, X > 0
(X > 0) means thafX is positive (semi) definite. For a
full row rank matrix M/, Mt denotes its pseudo inverse
matrix which is given byM™ = MT(MMT)~'. For a
matrix X, | X ||» denotes it2-norms. Finally, we use the

“ ” H . A B —
packed notauon.(%) =C(sI-A)"'B+D.

2. PROBLEM FORMULATION

Consider the quantized feedback system which con-
sists of the LTI continuous-time plaft(s) with the state
z, € IR", the LTI continuous-time controlle€(s)
with the statex. € IR"¢, and the dynamic quantizers
vy = Qa, (u1), v2 = Qq,(usz). The system$P(s) and
C(s) are given by

l:Zp:| CAP B;)p v u <Ac B Bc2> |:U2:|
= pl 1 1=
U2 sz 0 Cc Dcl DCQ r
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(b) Usual feedback system

(a) LFT type quantizedfeedback
system with multiple quantizers

Fig. 1. Generalized quantized and unquantized systems

wherez, € IRY, r € IR?, u; € R™, up € R",

v € R™, andvy, € IR™ denote the measured out-
put, the exogenous input, the controller output, the plant
measured output, the plant input, and the controller in-
put, respectively. The continuous-valued signalsand

uo are quantized into the discrete-valued signaland

vo because ob; = Qg, (u1) andve = Qg,(ug2). For
the above systems, define the following vectarg: :=

[y 2l ] € R™(ng := np +nc)u = [u] ug ]’

v:=[v] v ]T, and matrices:
A._{O AJ, Bl._[BCQ], BQ._[O B}
0 C.
Ci:=[Cpn 0], Dy1:=0, CQ._[CPQ 0 }

D,
D21 = |: 02

and the quantize€, = diag(Qq4,,Q4,). In this case,
one gets the linear fractional transformation (LFT) type
quantized feedback system kig. 1 (a) where the LTI
continuous-time generalized plagt(s) with the state
x4 € IR™ is represented by

i’g A B1 B2 Tg
Zp = Cl D11 0 T (1)
Y Cy Dy Doy v

As shown above, the LFT formulation in (1) covers the
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Fig. 2. Midtreadtype quantization

ie.,
vy = (Ist(uqi)7 Ugi = Vgi + U4

and the dynamic compensaiQs(s) given by

Tgi | _ | Aqi Bgi | | %qi e oy
|:qu:| = |:qu 0 eqi y €qi 1= Ui — Uy
wherev; € R™, u; € R™, andv,; € IR™. Fors = 2,
one gets the i/o type dynamic quantizers. Then the quan-
tizer Qg := diag(Quu, ..., Qas) is realized by the static
quantizerQ,; := [q[,,..,¢%,]T : R™ — dIN"", i.e.,
v=Qst(tg), Uq =14+ u 2

and the compensatdp(s) := diag(Q1(s),...,Qs(s)),
ie.,

x A, B x
o] =[] ] X
A, =diag(Ag, ..., Ags), By :=diag(Bg, ..., Bys),
Cq:=diag(Cy1, ..., Cys)
where z, = [ z},.,z] |7 € R"™, v, =
[vqu,...,v;S " € R™, Ug = [ugl,...,ugs " e R™
ande, := [e]},....e), | € R™. Note thatgy is of

the nearest-neighbor type towarebo with the quanti-

zation intervald € IR; and the initial state is given
by z,(0) = 0 for the drift-free ofQ4[2, 3] such as the
midtread type quantizer iRig. 2.

For the LFT system withG(s) and @ in Fig. 1 (a)
with the initial statezy = z,(0) and the exogenous sig-
nalr € L2, z,(t, xo,r) denotes the output of, at the
time ¢t. Also, for the system irFig. 1 (b) without @,
2y (t, 20, 7) denotes its output at the time This paper

various systems. Then this paper considers the LFT type considers the following cost function:

guantized feedback systems. Also, we assume that the

matrix A+ Bs (I — Das) ~1Cs is Hurwitz, that is, the usual
feedback system iRig. 1 (b) is stable in the continuous-
time domain.

For the systenG(s), we define the discrete-valued
vectorv := [v]f,...,v] |T € IR™ and the continuous-
valued vectoru := [ ul,..,ul |7 € ™, respec-
tively, and consider the dynamic quantizer= Q4(u)
which consists of the multiple dynamic quantizefs=
Quai(u;) (@ 1,...,s) with the state vector, €
RR". The cases > 1 implies that the multiple dy-
namic quantizerg§) ; are distributedly implemented. The
sub-quantizeK); consists of the static quantizeg; :
R™ — dIN™ with the quantization interval € R,
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J(Qq) : z(xo, 1)

sup
(zo,r)ER™9 X LB,

where

z(xg, 1) = mzaxsgp |2pi(t, 0, ) — 23 (t, w0, 1)

andzy;, z,,; denote the'® entry ofz,, andz,, respectively.

If the quantizerQ, minimizesJ(Q.), the system in
Fig. 1 (a) optimally approximates the usual system in
Fig. 1 (b)in the sense of the input-output relation. In this
case, we can use the existing continuous-time controller
design methods for the systemHig. 1 (b).

Motivated by the above, our objective is to solve the
following continuous-time dynamic quantizer synthesis
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problem (E): For the LFT system composed of (1), (2)
and (3) with the initial state;; € IR"s and the exogenous
signalr € L , suppose that the quantization interval
d € IR, and the performance level € IR, are given.
Characterize a stable continuous-time dynamic quantizer
Qq (i.e., find parameter$ng;, A,:, Bgi, Cyi)) achieving
J(Qa) <.

3. MAIN RESULT

Define the following matrices:

D:= (I - Dg)™t, C:=DCy A:=A+ ByC,
A BC,

B

C’:Z[Cl O].

For the matrixB € R™*™ andi = 1,...,s, B; €
R™s*™ denotes the'” block column ofB, i.e., B :=
[By,...,Bs .

Assumption 1: For every = 1,...,s, the matrix

C1A"B; is full row rank wherer; € {0} UIN, is the
smallest integer satisfying, A™ B, # 0.

In quantizer analysis, by using our early result [7], we
obtain the the optimization proble(Aop):

min v s.t.
P>0,min; {|Re(2X; (A))|}>a>0,v>0
ATP + PA + aP PB
|: BT(P _7332 Im, S 07 (4)
P oer
>
{ ¢ 7 } =0 ©)

That is, the performance level in (5) evaluates the
upperbound of the difference betweej(t, z¢,r) and
zp(t, xo, ) Within in invariant set framework, and

J(Qa) <

holds. Also, the infimum ofy can be expressed by the
following lemma [7].

Lemma 1: Suppose that the quantization intervaE
IR, is given. Consider the proble(/op). The infimum
of v is given by
dy/m

2/«
> ee(AJra/zz)tggTe(AJraz/Ql)TtGTdt7
0
a € (0, min{|Re(2X;(A))|})-
The problem(Aop) suggests that the quantizer syn-
thesis problen{E) reduces to the following non-convex
optimization problen{OP):

>\InaxD (a), (6)

infy = inf

D(a):=

?>0,Aq,3q%;%>a>o,w>oﬁy s:t. (4) and (5)
wherea := min,;{|Re(2);(A))|}. That is, if (OP) is
feasible(E) is feasible and the obtained quantizer is sta-
ble. Under some circumstances, we obtain an closed form
solution from (6) as follow.

Theorem 1: Consider the non-convex optimization
problem (OP). Suppose that > 1 and Assumption 1

136

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th *13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

holds. For a given scalaf € IR, an optimal solution
of (ngi, Agis Bgis Cqi) (i = 1,2, ..., s) and its infimum of
~v € IR, to the problen{OP) are given by

nqi = ’I'Lg, Aq = A, qu = Bi (7)
qu = —(ClA” BZ)TCl(A + f])TH_l
foreveryi = 1,2, ....,s and
dv/m
infy= —— ol oo Opi -vr Ops | ||2, 8
infy = 52 (o 0 0] (®)
L (27—1)' I
e \/(n!)2(2f— oyt CAB:

p = min{[Re(2X;(A))], [Re(2Ai(Aq + ByCo))l}
if the matrix A, + B4;Cy; defined in (7) is Hurwitz for
everyi =1,2,...,s.

In this paper, we call the quantizer in (7) the decen-
tralized optimal dynamic quantiz€}”. Theorem 1 indi-
cates tha®)!” and its achievable performance are param-
eterized by the scalaf. Next, this paper considers the
relation between the scalgrand the stability ofp?” for
the simple casg = m, in addition, presents a tractable
adjustable range gf similar to [7]. For the simplicity, we
consider the centralized quantizer case 1 andr; = 7.

(b) QuantizerQ 4 with Qcq(s)
(a) QuantizerQ 4 with Qe(s)

Fig. 3. Equivalent expression of dynamic quantizgy

As shown inFig. 3 (a), an equivalent expression of the
guantizer is given by the quantization err@p. and
Qc(s) :== Cy(sI — (Aq + B,Cy))~ ' B,. The quantizer
structure inFig. 3 (a) can be recast as the system with
Qeq(8) == Qc(s) + I in Fig. 3 (b) where the signad is
the differencee := v — u, ande, = v, + e. For the
quantizerQ”, then one gets

on(5) 1 (A—B(C1A'B)'Ci(A+ fI)"T!|B
eqrv/ —(CL1ATB) ICL(A+ fI)TT [T
which is correspondingo the compensatof).,(s) in
Fig. 3 (b). The inverse system 6J¢? (s) is given by

ep 5k+1

k=0
= (C1A™B) (s + f)"Ge(s)

whereG,(s) := Ci(sI — A)~!B. Then we obtain the
stability condition ofQ” .

Theorem 2: The following statements hold. (i) The
transmission poles aP¢?(s) consist of both “— 7 and
the transmission zeros G£ (s). (ii) The optimal dynamic
quantizerQ;” in (7) is stable if and only if the all trans-
mission zeros o, (s) are stable (i.e., the syste@(s) is
minimum phase).
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Denote bySmax(dmax) the maximum real part of the
stable transmission poles (zeros) for the systeits).
From the statemerft) of Theorem 2, one gets the rang
of f as follows:

f > min{|ﬁmax‘7 ‘(Smaxl}'

e

Also, the following theorem derived from (6) in Lemma
1 and (8) in Theorem 1 provides an analytical relation

between the quantize@,; and Q,; in the continuous-
time domain.

Theorem 3: Consider the problenfOP) and de-
note byy,; and~, upper bounds of (Qs;) and J(Qq),
respectively. In the case of =1,

VAL 4o

infﬂ =

Vst \/? ’
holds.

Since the matriA is stable A < 0 holds in (9). Theo-
rem 3 guarantees that the scafaf the quantizef) ; im-
provesJ(Q.) compared with the quantiz€},; in terms

9)

of the infimum of the upper bound ratio of the cost func-

tions. Then the larger value the scafais set to be, the
better approximation the quantiz@f;” achieves between
the minimum phase systemshigs. 1 (a)and(b).
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Fig. 4. Time responses witf),

Consider the decentralized 1/0 quantizer system. The

plant P(s) is the unstable minimum phase LTI system:
0 1:0
} = -2 1:-2 [ Tp

Zp = U2.
’U1:|7 P 2

Its eigewalues ard).5 +0.866¢ and its zero i —2}. The
stabilizing controllerC'(s) is given by

RENE
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The resultantzeros ofG.(s) are —3 and —4. For the
quantizerQ?” in (7), we setd = 10 and f = 10. The
performance ismf vy = 4.23. Fig. 4 shows the time re-
sponses ofu (t), ua(t), v1(t), v2(t) and z,(¢) for the
dynamic quantizer in Theorem 1 with the initial state
74(0) =[—4 0 —1 ]T. The thin lines and the thick lines
illustrate the time responses of the usual feedback system
in Fig. 1 (b) and the quantized feedback systenfrig. 1

(a), respectively. The controlled outpyf of the dynamic
quantizer does not go to zero. However, we see that the
controlled output ofig. 1 (a)approximates that dfig. 1

(b) even if the discrete-valued signals € {—10,0, 10}
andwvy, € {—10,0,10} are applied. Not that the larger
value of f not only provides the better approximation per-
formance, but also switches the outputsandvs, more
quickly.

4. CONCLUSION

Focusing on continuous-time LFT type quantized
feedback systems, we have proposed the continuous-
time dynamic quantizer analysis and synthesis condi-
tions. This paper has concentrated on the case of mini-
mum phase systems, clarified that optimal dynamic quan-
tizers and their performance are parameterized by the de-
sign parameter. Also, an analytical relation between the
static and dynamic quantizers has been presented. Fi-
nally, it has been pointed out that the proposed method
is helpful through the numerical example.
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