
Non-Event Driven Graphics API for Programming Education

 Kenneth J. Mackin

Tokyo University of Information Sciences, Chiba 265-8501, Japan
(Tel: 81-43-236-1329, Fax: 81-43-236-1329)

mackin@rsch.tuis.ac.jp

Abstract: Current multitasking window-based operating systems have adopted an event-driven model to support graphics and

user interface control in application programs. But for beginner programmers, the idea of threads and event handling can be

difficult to grasp, thus preventing beginner programmers for creating graphics applications, leaving programmers in the early

stages to create simple text based console applications. In this research, a non-event driven graphics API for programming

education is proposed. By applying the proposed graphics API, programmers can create graphics and real-time user interface

applications by simple state-request method calls not requiring any event handling or event call-back methods. The proposed

graphics API also supports text based console I/O such as print line and line input, so beginner programmers can shift from
console based applications to graphics applications without any paradigm changes.

Keywords: BASIC graphics, Graphics programming, programming education

1 INTRODUCTION

After the introduction of Graphical User Interface (GUI)

by Xerox PARC in 1973, computer operating systems have

moved from Character User Interface (CUI) centric designs

to GUI-centric designs. As GUI-centric application

development became popular, GUI widget toolkits were

introduced, in which 'GUI widgets', or GUI components

such as buttons and text fields, are controlled through an

event-driven programming model.

Current multitasking window-based operating systems,

including UNIX X Windows and Microsoft Windows, have

adopted this event-driven model to support graphics and

user interface control in application programs. Naturally,

most of current programming languages, such as C and

Java, which support graphical user interfaces, use the event-

driven API model.

In an event-driven programming model, an 'event' is an

action that triggers some program code, such as a mouse

click or a key stroke. A program registers which event

triggers which program code, called event-callback or

event-handler. The event-driven model allows the

programmer to concentrate on only the related event for a

particular code, and facilitates independent GUI design and

reusable GUI widget programming. In recent programming

languages such as Java, the event dispatching routine,

which receives the event signal from the underlying

operating system, manages the list of event handlers, and

calls the appropriate event-handler for the appropriate event,

is hidden altogether from the user, and GUI programmer

simply programs the event-handler and waits for the event-

handler to be called.

But for beginner programmers, the idea of threads and

event dispatching can be difficult to grasp, leading the

beginner to program something that he/she does understand

what is happening. This initial barrier prevents beginner

programmers from creating graphics applications, leaving

programmers in the early stages of education to create

simple text based console applications which are not event

driven.

Text based console applications have limited value in

current GUI-centric operating systems, so there is a natural

need for an intermediate step between text-based

programming and event-based GUI programming to ease

the jump between the two paradigms. Also, a GUI program

can be much more useful than a text-based program and

closer to 'real' applications in a GUI operating system

environment, which can greatly improve the motivation and

satisfaction of the beginner programmer during

programming education.

In order to overcome this problem, a non-event driven

graphics application programming interface (API) for

programming education is proposed in this research. By

applying the proposed graphics API, programmers can

create graphics and real-time user interface applications by

simple state request method calls not requiring any event

handling or event call-back methods. The proposed

graphics API also supports text based console I/O such as

print line and line input, so beginner programmers can shift

from console based applications to graphics applications

without any paradigm changes and minimal code changes.

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 118

2 NON-EVENT DRIVEN GRAPHICS API

The proposed non-event driven graphics API, named

Basic Graphics, is implemented as a Java language class.

Basic Graphics receives its design hints from 1980's BASIC

language graphics approach. In particular, many of the

graphics commands are based on F-BASIC by Fujitsu

Limited.

Basic Graphics consists of only 1 public class,

jp.ac.tuis.basic.BasicGraphics class. Basic Graphics class

consists of methods to draw text, graphics and images,

retrieve line input from the keyboard, and retrieve keyboard

and mouse states. Additionally Basic Graphics includes

features to play music and beep, as well as create network

connections with other Basic Graphics applications and

send and receive network data. Basic Graphics applications

can be run as a stand-alone Java application or a Java

Applet.

Example 1 below is an example of a hello world

program written in Basic Graphics.

//Example 1

import jp.ac.tuis.basic.*;

public class HelloWorld{

 public static void main(String[] args){

 BasicGraphics g = new BasicGraphics();

 g.println("Hello, world!");

 }

}

Example 1 will create a window and print "Hello,

world!" on the top of the created window.

Fig. 1. Hello world program using Basic Graphics

Example 2 below is an example of a simple animation

program.

//Example 2

import jp.ac.tuis.basic.*;

public class Animation{

 public static void main(String[] args){

 BasicGraphics g = new BasicGraphics();

 for(int i=0; i<40; i++){

 g.locate(i,10);

 g.print('X');

 g.sleep(200);

 g.locate(i,10);

 g.print(' ');

 }

 }

}

The locate(x,y) method in Example 2 defines the x,y

coordinates of the location of the following print() method.

The program will wait further execution in the sleep()

method for the given milliseconds. In this example, an 'X'

will move from the left of the screen to the right.

Example 3 below is an example of a program to retrieve

keyboard input.

//Example 3

import jp.ac.tuis.basic.*;

public class Type{

 public static void main(String[] args){

 BasicGraphics g = new BasicGraphics();

 while(true){

 char key = g.inkey();

 if(key != 0){

 g.print(key);

 }

 }

 }

}

The inkey() method returns the key of the pressed

keyboard key. If no key is pressed, then inkey() returns 0

(zero).

By using the proposed Basic Graphics API, the

programmer can draw graphics and retrieve key input

events (and similarly mouse events) without using the

event-driven model. The proposed model relies only on the

simple main method architecture of console based

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 119

application programming which the programmer is familiar

with. Example 3 is also a simplified model of a event

dispatcher, and can be built upon to describe the

implementation of a event dispatching loop later in the

programming education.

3 EXPERIMENTAL USE IN PROGRAMMING

 EDUCATION

The proposed Basic Graphics API was introduced to 10

2rd year college students who have had 1 year prior Java

programming education, but could not understand event

handling and were not able to create GUI applications yet.

After a 30 minutes lecture on how to use the Basic Graphics

API, the students were given a graphical programming

assignment (Fig.2) to complete. All participating students

were able to complete the assignments within 60 minutes.

Some of the students were able to create individual

graphical applications on their own (Fig.3,4). The

participating students are gave positive feedback on the

usefulness of the Basic Graphics API, it was clear that the

motivation and satisfaction of the students had been

improved.

Fig. 2. Graphical programming assignment

Fig. 3. Example graphical application of students

Fig. 4. Example graphical application by student

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 120

4 CONCLUSION

In this research, a non-event driven graphics API for

programming education is proposed. By applying the

proposed graphics API, programmers can create graphics

and real-time user interface applications by simple state

request method calls not requiring any event handling or

event call-back methods. The proposed graphics API also

supports text based console I/O such as print line and line

input, so beginner programmers can shift from console

based applications to graphics applications without any

paradigm changes.

 The proposed API was introduced to 2nd year college

students with text-based console programming experience

to verify the effectiveness of the proposed method. All

participating students were able to complete the graphical

application assignment in the total 90 minutes period, and

the motivation and satisfaction of the students had been

improved.

 For future works, a complete self-learning tutorial for

using the Basic Graphics API will be developed, to allow

students to use the training material at their own learning

pace.

REFERENCES

[1] Ephraim P. Glinert (ed) (1990), Visual Programming

Environments: Paradigms and Systems. IEEE Computer

Society Press

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 121

