
Programming Learning Support Systems Focused on Structures of
Programming Language and Code

Masanori Ohshiro1, Takashi Yamaguchi1, and Eiji Nunohiro1

1Tokyo University of Information Sciences, 4-1 Onaridai, Wakaba-ku, Chiba, Chiba, 265-8501, Japan
(Tel: +81-43-236-4667, Fax: +81-43-236-4667)

ohshiro@rsch.tuis.ac.jp

Abstract: The authors have developed a programming training system CAPTAIN (Computer Aided Programming Training And
INstruction). In this training system, each complete program is fragmented randomly into a few lines by the system. Students
sort the lines as an original program similarly to solving a puzzle game. In this paper, we propose an advanced feature for the
system. In order to write correct programs, students must know important structures of language ’s syntax. For example, block
syntax is used for significant structures in Java. Therefore, in the new system, a program is divided into block syntax elements.
First, contents of theses elements are empty except for their frame. Students are instructed to place them into correct position
and to fill contents of the block syntax elements. It is expected that students will understand the structures of the programs in
such process and their ability of writing programs will be improved.

Keywords: programming, learning, game, java

1 INTRODUCTION
The authors have developed a programming training sys-

tem CAPTAIN (Computer Aided Programming Training
And INstruction) and have applied the system in an ac-
tual programming course. Fig.1 is a login window of
CAPTAIN[1, 2, 3, 4, 5, 6]. In this training system, learn-
ers create programs similarly to solving a puzzle game as
follows. Each complete runnable program is fragmented ran-
domly into a few lines by the system. Users must sort the
lines as an original source program (fig.2). The system com-
piles the source program sorted by the user and checks the
correctness of it.

In our previous version of the system, exercises are exe-
cuted in style of a puzzle, sorting lines into correct source
programs as mentioned above. It seems that such a puzzle
method improves students ’ability of reading source pro-
grams and understanding algorithms in the codes. However,
it will not improve learners’ability for creating and writing
programs. A typical and simple learning method for program
writing is typing programs in a programming editor. But,
such a typing method brings many unexpected troubles and
needs sufficient time. On the other hand the puzzle method is
advantageous for lessons with a time limit, for example class
in school. Accordingly, we designed a new method for lesson
of writing and creating programs in the puzzle-style method.

2 SYNTAX-ORIENTED FRAGMENTATION
In order to write correct source programs, students must

know important structures of language’s syntax. For some
popular programming languages (Java, C, C++, etc.), block
syntax is used as significant structures. Fig.3 shows the typ-

Fig. 1. CAPTAIN

ical applications of block syntax in Java. These structures
based on the block syntax are important part of programs.
Such block syntax element is a span of tokens enclosed by
a pair of parentheses, brackets, and braces. Almost part of a
source program written in these languages consists of block
structures. Therefore, in the new system, a program source
is divided in block syntax elements. At the first, contents of
theses elements are empty except their block frame. Students
are instructed to place them into correct position. In succes-
sion, students must fill contents of the block syntax elements.
It is expected that students will understand the structures of
the programs in such process and their ability of writing pro-
grams will be improved.

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 106

Fig. 2. Each learner must sort fragmented and randomly
listed parts of a program at the lower left panel into the cor-
rect order at right lower panel using drag and drop.

3 METHOD OF THE FRAGMENTATION
The method of syntax-oriented fragmentation besed on

block syntax is displayed in fig.4. Lines of a source code are
symbolized and analyzed using simple syntax parsing. Blank
lines in the source program are regard as equivalent to each
other. These blank lines are defined as follows:
blankline = B3 = B6 = B9;

These blanklines are ignored in symbolic expressions men-
tioned below. All lines that contains the same contents are
regard as equivalent to each other and defined as follows:
C3 = D4 = C6 = C9 = C12 = C15 = A3;

A Class ’Person’ is analyzed and described as follows:
"class Person"

= A1, A2 { B1, B2, B4, B5,

B7, B8, B10 }, A3;

The above symbolic expression describes that a class ’Per-
son’ is defined as sequence of A1, A2, A3. Moreover, the
expression shows A2 is set of B1, B2, B4, B5, B7, B8, B10
(the blank lines are ignored). In brief, contents of a pair of
braces may appear in random order in these symbolic expres-
sions. If some part of contents of such a pair of braces must
be in particular order for some context, we may use a pair of
brackets as follows:
{ B1, [B2, B3] }

In this case, two instances shown below are permitted.
B1, B2, B3

B2, B3, B1

In many cases, such necessity of particular order is caused by
semantic context, therefore [] may be specified manually.
The expression below describes method ’setAge’ is defined
as B5 or a sequence of C4, C5, C6.

if(x > 0) {

 // statements

}

else {

 // statements

}

while (i < n) {

 // statements

}

if(x > 0) {

 // statements

}

else {

 // statements

}

while (i < n) {

 // statements

}

try {

 // statements

}

catch (Exception e) {

 // statements

}

try {

 // statements

}

catch (Exception e) {

 // statements

}

class A {

 // members

}

int max (int a, int b) {

 // statements

}

for (i = 0; i < n; i++) {

 // statements

}

Fig. 3. Typical applications of the block syntax in Java.

class Person {

 private int age;

 private String name;

 public int getAge() {

 return age;

 }

 public void setAge(int age) {

 if(age >= 0) {

 this.age = age;

 }

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public Person(int age, String name) {

 setAge(age);

 setName(name);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

C1

C2 D1

D2

D3 E1

D4

D5

D6

D7

D8

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

A1

A2

A3

blankline = B3 = B6 = B9;

C3 = D4 = C6 = C9 = C12 = C15 = A3;

“class Person”

 = A1, A2 { B1, B2, B4, B5, B7, B8, B10 }, A3;

“method setAge” = B5 = C4, C5{D2, D3{ E1 }, D4}, C6;

Fig. 4. An example of syntax-oriented fragmentation besed
on block syntax.

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 107

"method setAge" = B5

= C4, C5 { D2, D3 { E1 }, D4 }, C6;

This expression can be written in two expressions as follows:
D3 = { E1 };

"method setAge" = B5

= C4, C5 { D2, D3, D4 }, C6;

}

}

setName(name);

setAge(age);

public Person(int age, String name) {

}

this.name = name;

public void setName(String name) {

}

return name;

public String getName() {

}

}

this.age = age;

if(age >= 0) {

public void setAge(int age) {

}

return age;

public int getAge() {

private String name;

private int age;

class Person { A1

A3

B1

C13

C15

D7

E1

D5

B9

B3

D8

C7

C10

C12

C9

B2

D2
C5

D4

B6

D6

C1

C4

C6

C3

D1

“class Person”

“ctor Person”
(B10)

“method setName”
(B8)

“method getName”
(B7)

“method getAge”
(B4)

“method setAge”
(B5)

Fig. 5. An example of fragments in random order.

The source program is analyzed in the manner mentioned
above. At the next, the fragments are sorted in random order.
It is important that lines of every block syntax are integrated
into one fragment without its contents in this process (fig.5).
By the way, white spaces for indent is omitted in the display
because such indents are unexpected hints.

4 USER OPERATION
Fig.6 shows typical user operation. At the first, fragments

are displayed. A user is instructed to place them into correct
position. User can select and move the fragments to construc-
tion panel using drag and drop (fig.6-(1)). Especially, con-
tents of every block syntax fragment can be inserted (fig.6-
(2)). A user can fill and sort fragments in construction panel
any number of times. At the last, a user check the correctness
of the sorted fragments.

private int age;

class Person {

}

Pieces of a program

(2) An example of filling a block syntax element.

(1) An example of an initial state and the first operation.

Construction panel

drag and drop

private int age;

private int age;

class Person {

}

(3) An example of a block syntax element correctly filled.

class Person {

}

Fig. 6. An example of typical user operation.

5 CHECKING CORRECTNESS OF RESULTS
Fig.7 is a example of an answer. In order to check the cor-

rectness of the answer, the system matching the symbolic ex-
pressions extracted from original source code with the sym-
bolic expressions extracted from user’s answer according to
the rules as follows:

(1) Blank lines are ignored.

(2) Symbols in { } may appear in random order.

(3) Inside { }, symbols in [] must appear in specified
order.

For example of fig.4 and fig.7, the first different point is de-
tected as follows:
Original:

"method setAge" = B5

= C4, C5 { D2, D3 { E1 }, D4 }, C6;

Answer:

"method setAge" = B5

= C4, C5 { D2, D3 { D1 }, D4 }, C6;

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 108

The different part of these symbolic expressions is under-
lined. Therefore, the answer is incorrect.

}

 }

 this.name = name;

 public void setName(String name) {

 }

 return name;

 public String getName() {

class Person {

25

19

18

17

16

15

14

1

D5

D6

C7

C8

C9

C10

C11

C12

 private int age; 2B1

 private String name; 3B2

4B3

 }

 public int getAge() {

7

5C1

C2

 return age; 6D1

C3

B4

12 }

 }

 if(age >= 0) {

 public void setAge(int age) {

11

9

8

D2

D3

 this.age = age; 10E1

D4

C4

C5

C6

B5

13B6

B7

B8

20B9

 }

 public Person(int age, String name) {

24

21

 setAge(age); 22D7

 setName(name); 23D8

C13

C14

C15

B10

A1

A2

A3

“class Person”

 = A1, A2 { B2, B1, B5, B4, B7, B8, B10 }, A3;

“method setAge” = B5 = C4, C5{D2, D3{ D1 }, D4}, C6;

Fig. 7. An example of an answer.

6 CONCLUSION

We proposed a new feature, syntax-oriented fragmenta-
tion for CAPTAIN. It is expected that students may pay much
more attention to structures of source code and syntax of Java
using this new feature. It seems that the feature is useful to
know weak points of students’ because it is easy to detect
where the students made mistakes. We will implement the
feature in CAPTAIN and examine the effect of the feature.

ACKNOWLEDGMENTS

This research was supported by The Ministry of Edu-
cation, Culture, Sports, Science and Technology (MEXT),
Grant-in-Aid for Scientific Research(C) (24501207).

REFERENCES
[1] Nunohiro E, Mackin K, Ohshiro M, Matsushita K, Ya-

masaki K (2007), Implementation of a GA driven pro-
gramming training support system, The 12th Interna-
tional symposium artificial life and robotics, pp.517-
522.

[2] Nunohiro E, Matsushita K, Mackin K, Ohshiro M, Ya-
masaki K (2008), Design and development of a puzzle
based programming learning support system with ge-
netic algorithm (in Japanese), Transactions of Japanese
society for information and system in education, vol.25,
No.2, pp.207-213.

[3] Yoneyama Y, Matsushita K, Mackin K, Ohshiro M, Ya-
masaki K, Nunohiro E (2008), Puzzle Based Program-
ming Learning Support System with Learning History
Management, The 16th International Conference on
Computers in Education (ICCE2008), pp. 623-627

[4] Yamakawa Y, Ohshiro M, Matsushita K, Mackin K,
Nunohiro E (2010), Programming Learning Support
System ’CAPTAIN’ with Motivational Study Model,
The 18th International Conference on Computers in Ed-
ucation (ICCE2010), pp. 171-175

[5] Ohshiro M, Mackin K, Matsushita K, Nunohiro E,
Yamakawa Y (2010), Programming Learning Support
System with Learning Progress Monitoring Feature,
Joint 5rd International Conference on Soft Computing
and Intelligent Systems and 11th International Sym-
posium on Advanced Intelligent Systems (SCISISIS
2010), pp.1465-1468

[6] Ohshiro M, Matsushita K, Mackin K, Yamaguchi T,
Nunohiro E (2012), Programming Learning Support
System with Competitive Gaming Using Monitoring
and Nicknames, The 17th International symposium ar-
tificial life and robotics, pp.238-241.

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 109

