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Abstract: Transition from laminar flow to turbulence often occurs in closed pipes such as pathologic blood vessels and 
artificial systems such as micro-tubes. While varying disturbances entering at pipe inlet or at heart pump, the transition points 
in space from laminar flow to turbulence in closed pipe are solved by using the weakly-stochastic Navier-Stokes equation and 
a finite difference method proposed previously by us (Naitoh and Shimiya, 2011), although the previous numerical simulations 
and instability theories based on the deterministic Navier-Stokes equation could never indicate the transition point in closed 
tunnel. The most important point of our approach is a philosophical method proposed for determining the stochasticity level, 
which is deeply related to boundary condition. Here, we qualitatively clarify the relation between the transition point and 
amount of adit on solid wall, because living systems exchange water and molecules through the wall of blood vessel. A 
mysterious feature obtained is that a larger amount of additional adit at the inlet may result in laminalization of the boundary 
layer. 
. 
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1. INTRODUCTION 
Reynolds experimentally showed the transition to 
turbulence in pipe flow 100 years ago.[1] However, 
traditional stability theories based on deterministic 
continuum mechanics [2, 3, 4, 5] cannot indicate the critical 
Reynolds number, i.e., the transition points in closed pipe 
flow for various inlet disturbances, although a great deal of 
effort has been exerted over the years to reveal the 
transition points in pipe flow using experimental, 
theoretical, and computational approaches. 
Experimental researches related to puffs and slugs [6, 7, 8, 

9] have yielded important information for clarifying the 
early stage of the transition process around the critical 
Reynolds number. However, these previous studies could 
not clarify clearly whether or not the stochasticity coming 
from molecular fluctuations influence the transition point in 
pipes, because the spatial resolution was not sufficient. 
Recent mathematical and physical theories [10, 11] have 

revealed important aspects about the early stage of the 
transition in pipes. Numerical computations of pipe flow 
have also been tried using the deterministic Navier-Stokes 
equations [12, 13, 14, 15]. However, the influence of inlet 
disturbances on the transition point in space and the critical 
Reynolds number in pipe flow cannot be analyzed by these 
approaches. 
There are also some theoretical researches for the 

mesoscopic regime lying between molecular dynamics and 
continuum mechanics. [16, 17, 18] However, the role of 
stochasticity for the nonlinear unsteady phenomena in 
multi-dimensional space such as those described by the 
Navier-Stokes equation are still mysterious. 
This has led to the possibility that averaging the 

phenomenon in a relatively large window for the continuum 
assumption eliminates the instability driven by small 
physical fluctuations in the mesoscopic regime. This may 
be true because our previous computations in a straight and 
closed pipe using numerical disturbances close to the 
random number generator have qualitatively showed the 
transition in space for various Reynolds numbers and inlet 

disturbances, which suggests the possibility of a stochastic 
Navier-Stokes equation. [19] 
Our previous reports [19-22] showed that weakly 

stochastic field equations averaged in a mesoscopic window 
(MW) smaller than that for continuum mechanics will lead 
to solutions to various transient and critical problems still 
unsolved even numerically. An important study [19-22] is 
that we could solve the transition point in space in the 
transition to turbulence in pipes while varying velocity 
fluctuations at the inlet. Thus, in this report, we apply the 
new numerical model based on the weakly-stochastic 
Navier-Stokes equation to the pipe flow including adit on 
wall. This is important, because adit on wall appear in 
various flows such as artifact test inside wind tunnel, blood 
flow, and fuel cell. 
 
2.METHODOLOGY 
It is stressed that actual pipe flow shows a transition to 

turbulence, although traditional linear instability analysis 
based on a deterministic governing equation such as the 
potential equation and Navier-Stokes equation with the 
divergence of velocity of  
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shows no transition in closed pipes, even if large 
disturbances are input. 
The early laminar boundary layer in pipes is thinner than 

the Kolmogorov scale [25]. Then, there are no actual flows 
without inlet disturbances. Thus, they lead to an 
inhomogeneous and wavy velocity distribution at the 
starting point of instability inside the very early laminar 
boundary layer that is thinner than the Kormogolov scale. 
Let us consider the smallest size of vortex in fully-

turbulent flow, i.e., the Kolmogorov scale. This is on the 
order of 1000 times as large as the mean free path of 
molecules in high Reynolds number flows. [25] Thus, the 
molecular discontinuity produces stochastic fluctuations of 
0.1% in density and velocity in the Kolmogorov-scale 
vortex. Even if the deterministic Navier-Stokes equation is 
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numerically solved using a fine grid system on the 
Kolmogorov scale, this stochasticity is not evaluated. This 
stochastic level is also close to the ratio between the inlet 
disturbance and main flow in wind tunnels. It is also 
emphasized that stronger inlet disturbances produce shorter 
transition points, which apparently come from the smaller 
minimum scale of the fluctuation in the thin boundary layer. 
For these reasons, deterministic models such as the 

deterministic Navier-Stokes equations based on the 
continuum assumption are essentially defective for solving 
the transition. Thus, the mesoscopic window size (Dmw) 
should be identical to this minimum scale of the weak 
fluctuation in the thin boundary layer. 
To say more, an asymmetric distribution of numerical 

errors in space similar to a random force induced vertical 
asymmetric flows in many previous computational studies, 
which include the Karman vortex streets. [4, 12, 13, 29] 
This fact also supports the inevitability of stochastic terms. 
It was also confirmed previously that the mean velocity 
profiles after the transition point computed by the stochastic 
Navier-Stokes equation [19-22, 26] agreed well with the 
experimental data in Refs. 27 and 28. The early stage of the 
transition for a low Reynolds number of 6,000 in our 
computations also shows a two-dimensional path of 
particles (corresponding to the well-known Squire theorem), 
although relatively high Reynolds numbers suddenly 
generate three-dimensional flow. 
In this section, we first show the concrete formulation for 

the stochastic Navier-Stokes equation related to boundary 
condition and the computational results performed with a 
fine grid system having high resolution and accurate 
random force, while there is no adit on wall. 
The definition of physical quantities such as fluid velocity 

),,( 321 uuuu =
r

and density  ρ in molecular velocity 
 ),,( 321 cccc =

r
and physical space ),,( 321 xxxx =

r
in Eqs. (3) 

and (4) leads to the deterministic Navier-Stokes equation, 
when the window size for averaging is large on the basis of 
continuum assumption. [2] 
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where   and ),,,(, ttxcfm rr

denote molecular weight, 
probability density function, and time, respectively, while 
cr denotes the molecular speed.  
Here, we redefine physical quantities such as fluid 

velocity and density in the mesoscopic window size (Dmw) 
smaller than that for deriving continuum mechanics. 
Averaging should be done in the Dmw, which is the 

minimum scale dominating the flow phenomenon, Lms. As 
a result, we obtain  
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where mwmw Vdx  and   denote the length scale for 
integration and control volume with the diameter Dmw, 
respectively, while u

r
 andρ  imply the corresponding 

values averaged in Dmw and  ' and' uρ are stochastic 
fluctuations indeterminate. [19,21,22] 
A mesoscopic averaging window size, smaller than that 

for the continuum assumption, yields a stochastic 
compressible Navier-Stokes equation in a non-conservative 
form in the case where specific heat and viscosity 
coefficient have constant values, written as the governing 
equation below, 
 
 
 
 
 
 
 
 
 
   (6a) 
where ui, p, )31( −=iiε , t, Re, and Pe denote the 
dimensionless quantities of velocity components in the i-
direction, pressure, random forces, time, Reynolds number, 
and Peclet number, respectively. 
Equation (6a) is transformed to Eq. (6b), which is a multi-

level formulation. [29] 
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also the equation for 3f  is the spatial derivative of that of 

2f , while the third term on the left-hand side 
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denotes the spatial derivative of the convection and 
viscosity terms in 2f . Four variables of ,p ,u,D̂ i  

and T can be solved by the four equations in Eq. (6b). 
 The second term on the left-hand side of the energy 
conservation law in Eq. (6b) can approximately be 
eliminated for low Mach number conditions. 
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In this study, the initial velocity distribution is set to be 
that of the potential flow, i.e.,  

1)0(1 === Uotu
0)0()0( 32 ==== tutu                 (7) 

at each point, while the initial pressure and temperature are 
constants. 
The inlet boundary condition is given as 

0,1 321 ==+=+= uuUou δδ                                         
  (8a) 

and the outlet boundary condition as 

0=
∂
∂

iu
n

                                 (8b) 

where Uo , δ , and n denote the dimensionless inlet 
velocity, dimensionless inlet disturbance, and the direction 
normal to the outlet, respectively. 
A no-slip boundary condition 

oui =                                       (8c) 
is imposed at the solid walls of the pipe. 
Next, let us consider 

1
ε  in Eq. (6b). Stronger inlet 

disturbances result in a smaller characteristic scale, because 
they lead to more inhomogeneous velocity distributions at 
the starting point of instability inside the laminar boundary 
layer. 
Two types of indeterminacies, in the boundaries and inner 

regions, should be set to the same level. [19, 20, 21, 22, 26] 
Thus, the relation  

δε CeN
N

n
=∑

=

/1
1                                (9) 

is used with an arbitrary constant Ce  and the number of 
grid points N. In this report, eC  is set to be of the order of 
1.0. [Comparisons with computations and experiments on 
the transition point in space and the theoretical 
considerations based on statistical mechanics including the 
Liouville equation brings that 

XC  should be about 1.0.] 

Stochastic terms 432
 and , , εεε  in Eq. (6b) should also 

be added to the momentum conservation law, the Poisson 
equation, and the energy conservation law averaged in the 
mesoscopic averaging window (MW). However, in this 
study, 432

 and , , εεε  are set to be 0.0, because their 

role is similar to small variations of Reynolds and Peclet 
numbers in space and time, resulting in less influence on 
the transition point than in the case of the mass 
conservation law. This is clear from the fact that even the 
turbulence viscosity model based on the RNG theory [23] 
has less influence on the transition point, when the model is 
used in numerical computations. The stochastic terms 

432
 and , , εεε  have relatively weak influence on the 

transition phenomenon, because those in momentum and 
energy conservation laws can also be dissipative, while 
mass with 

1
ε cannot essentially be dissipative. 

There are two ways to calculate the random force term of 
1ε : One involves the use of a random number generator and 

the other a special numerical disturbance close to the actual 
random number. 
The second approach uses numerical errors coming from 

the iteration method for the matrix calculation, because the 
rounding error due to the iteration method such as the SOR 
method [30] is close to the random number generator, 
although truncation errors distorting the phenomenon 
should be eliminated. 
One reason why previous attempts to compute the 

transition point in space have not succeeded [12, 13] is that 

the criterion of 1ε  in Eq. (6b) was set to zero based on 
mathematics [30], not on fluid physics taking into account 
indeterminacy and molecular discontinuity. Evaluations of 
ε  in previous reports [30] were too small. Most of the 
previous studies on computational fluid dynamics have 
controlled only truncation errors, whereas the approach 
proposed here also provides physical control of rounding 
error. 
The numerical algorithm used here is based on a multi-

level formulation [29] that can simulate both 
incompressible and compressible flows. The momentum 
conservation law and the second derivative of the pressure 
equation in the formulation clarify the mathematical 
structure that the governing equation varies from an elliptic 
type to a hyperbolic type as the Mach number increases. 
Thus, the numerical algorithm is extended from the Marker 
and Cell (MAC) [31], SIMPLE [32], ICE [33], and CUP 
methods [34]. Details of the numerical discretizations and 
numerical algorithms are described in Refs. 29 and 34. 
Computational results computed on mean velocity, 

turbulence intensity, and transition point agree well with the 
experimental data reported by Laufer, while the present 
approach also reveals the critical Reynolds number around 
1,500 - 2,500. [19-22, 26] 
 
4. TRANSITION TO TURBULENCE IN A ST

RATGHT PIPE WITH ADIT 
Here, we examine the relation between the transition point 
in space and flow amount injected from solid wall into a 
straight pipe. Figure 1 qualitatively shows that larger 
amount of adit from the wall results in later transition point 
in space. This may be used for reducing the drag force. 
 
9. CONCLUSION 
The present result obtained by computation should be 
checked by comparing with experiments. 
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Fig.1 Relation between adit amount and transition point,  
which is computed by the present approach. 
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