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Abstract: Based on the analysis of interaction between manipulator’s hand and working object, a model representing
the constrained dynamics of robot is first discussed. The constraint forces are expressed by an algebraic function of
states, input generalized forces, and constraint condition, and then a decoupling control method of force and position of
manipulator’s hand tip is proposed. In order to give the grinding system the ability to adapt to any object shape being
changed by the grinding, we added estimating function of the constraint condition in real time for the adaptive force /
position control, which is indispensable for our method instead of not using force sensor. This paper explores whether
the performance of the proposed controller is independent of alloy work-piece models or not. The experimental result is
shown in order to verify the feature of the decoupling control of force and position of the tip.
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1. INTRODUCTION
Many researches have discussed on the force control

of robots for contacting tasks. Most force control strate-
gies are to use force sensors [1],[2] to obtain force in-
formation, where the reliability and accuracy are limited
since the work-sites of the robot are filled with noise and
thermal disturbances, reducing the sensor’s reliability.
On top of this, force sensors could lead to the falling of
the structure stiffness of manipulators, which is one of the
most essential defects for manipulators executing grind-
ing tasks. To solve these problems, some approaches us-
ing no force sensor have been presented [3]. To ensure the
stabilities of the constrained motion, those force and po-
sition control methods have utilized Lyapunov’s stability
analysis under the inverse dynamic compensation[4],[5].
Their force control strategies have been explained intel-
ligibly in books[6] and recently interaction control for
six-degree-of-freedom tasks has been compiled in a book
[7]. The problem to be solved in our approach is that
the mathematical expression of algebraic constraint con-
dition should be defined in the controller instead of the
merit of not using force sensor. In order to make the per-
formance of proposed controller be independent of target
work-piece model, grinding task requires on-line estima-
tion of changing constraint condition since the grinding
is the action to change the constraint condition in nature.
In this paper, we estimate the object’s surface using the
grinder as touch sensor. In order to give the system the
ability to grind any working object into any shape, we fo-
cus on how to update the constraint condition in real time,
obtaining the result that spline function is best for on-line
shape estimation. Based on the above preparation we ex-
plored a continuous shape-grinding experiment to evalu-
ate the proposed shape-grinding system, which aims for
grinding to desired shape without force sensor.

2. MODELING
2.1 Constrained Dynamic Systems

Hemami and Wyman have addressed the issue of con-
trol of a moving robot according to constraint condition

Fig. 1 Grindingrobot system

and examined the problem of the control of the biped lo-
comotion constrained in the frontal plane. Their purpose
was to control the position coordinates of the biped loco-
motion rather than generalized forces of constrained dy-
namic equation involved the item of generalized forces of
constraints. And the constrained force is used as a deter-
mining condition to change the dynamic model from con-
strained motion to free motion of the legs. In this paper,
the grinding manipulator shown in Fig. 1, whose end-
point is in contact with the constrained surface, is mod-
eled according (1) with Lagrangian equations of motion
in term of the constraint forces, referring to what Hemami
and Arimoto have done:
d

dt
(
∂L

∂q̇
)− (

∂L

∂q
) = τ + Jc

T (q)Fn − Jr
T (q)Ft, (1)

where,Fn is the constrained force associated with con-
straintC, Ft is the tangential grinding force,Jc andJr

satisfy;

Jc =
∂C

∂q
/ ∥ ∂C

∂r
∥= ∂C

∂r

∼
Jr / ∥

∂C

∂r
∥,

∼
Jr=

∂r

∂q
, JT

r =
∼
Jr

T

ṙ/ ∥ ṙ ∥,

r is thel positionvector of the hand and can be expressed
as a kinematic equation

r = r(q). (2)

L is the Lagrangian function,q is l(≥ 2) generalized co-
ordinates,τ is l inputs. The discussing robot system does
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Fig. 2 Modelof shape-grinding

not have kinematical redundancy.C is a scalar function
of the constraint, and is expressed as an equation of con-
straints

C(r(q)) = 0, (3)

(1) can be derived to be

M(q)q̈+H(q, q̇)+G(q)= τ+JT
c (q)Fn−JT

r (q)Ft, (4)

whereM is anl × l matrix,H andG arel vectors. The
state variablex is constructed by adjoiningq andq̇: x =
(xT

1 ,x
T
2 )

T =(qT , q̇T )T . The state-space equation of the
system are

ẋ1 = x2,

ẋ2 = −M−1(H(x1,x2) +G(x1))

+M−1(τ + JT
c (x1)Fn − JT

r x1)Ft), (5)
or the compact form is given aṡx = F (x, τ , Fn, Ft).
Using the inverted form of combination from (3) andẋ =
F (x, τ , Fn, Ft), Fn can be expressed as (this part had
been detailedly introduced in [10] by us)

Fn = Fn(x, τ , Ft), (6)
△
= a(x1,x2) +A(x1)J

T
r Ft −A(x1)τ , (7)

where,a(x1,x2) is a scalar representing the first term in
the expression ofFn, andA(x1) is anl vector to repre-
sent the coefficient vector ofτ in the same expression.
ẋ = F (x, τ , Fn, Ft) and (6) compose a constrained sys-
tem that can be controlled, ifFn = 0, describing the un-
constrained motion of the system. Substituting (7) into
(5), the state equation of the system including the con-
strained force (asFn > 0 ) can be rewritten as

ẋ1 = x2,

ẋ2 = −M−1[H(x1,x2) +G(x1)− JT
c (x1)a(x1,x2)]

+M−1[(I − JT
c A)τ + (JT

c A− I)JT
r Ft], (8)

Solutions of these dynamic equations always satisfy the
constrained condition (3).

2.2 Shape-grinding
In the past, we did the continuous shape grinding sim-

ulations[10] to try to extend the grinding ability of our
grinding robot[9]. Now in this paper, the continuous
shape grinding experiment which has been done by the
proposed force sensorless force/position control method
will be introduced.

To make the grinding task to be different from the for-
mer flat grinding experiment[9], we want to grind the
work-piece into the one with different kinds of shapes, for
example, grinding the flat surface into a curved one, just
like Fig. 2. In Fig. 2, we can find that the desired work-
ing surface is prescribed (it can be decided by us.), which
means the desired constrained conditionCd is known, so

Cd = y − fd(x) = 0 (9)

But the constrained conditionC(j) (j = 1, 2, · · ·, d − 1)
changed by the previous grinding is hard to define as an
initial condition. So we define

C(j) = y − f (j)(x) = 0 (10)

where,y is they position of manipulator’s end-effector
in the coordinatesΣw depicted in Fig. 2 and we assume
C(1) is known, that is to say,f (1)(x) is initially defined.
f (j)(x) is the working surface remained byi-th grind-
ing. Andf (j)(x) is a function passing through all points,
(x1, f (j)(x1)), (x2, f (j)(x2)), · · ·, (xp, f (j)(xp)), these
observed points representing the (j)-th constraint condi-
tion obtained from the grinding tip position since we pro-
posed previously the grinding tip used for the touching
sensor of ground new surface. Here we assumef (j)(x)
could be represented by a polynomial of(p − 1)-th or-
der ofx. Given the abovep points, we can easily decide
the parameters of polynomial functiony = f (j)(x). If
the current constrained condition can be got successfully,
which means the current working surfacef (j)(x) can be
detected correctly, the distance from the current working
surface to the desired working surface which is expressed
as∆h(j) shown in Fig. 2 can be obtained easily.

∆h(j)(xi) = fd(x)
∣∣
x=xi

− f (j)(x)
∣∣
x=xi

(11)

In this case, we can obviously find that the desired con-
strained force should not be a constant. It should be
changed while∆h(j) changes. So we redefine the de-
sired constrained forceF (j)

nd as a function of∆h(j) with
constantk′, shown as follows:

F
(j)
nd (xi) = k′∆h(j)(xi) (12)

3. FORCE / POSITION CONTROLLER

3.1 Controller using Estimated Constraint Condition
Reviewing the dynamic equation (1) and constraint

condition (3), it can be found that asl > 1, the number
of input generalized forces is more than that of the con-
strained forces. From this point and (7) we can claim that
there is some redundancy of constrained force between
the input torqueτ , and the constrained forceFn. This
condition is much similar to the kinematical redundancy
of redundant manipulator. Based on the above argument
and assuming that, the parameters of the (7) are known
and its state variables could be measured, anda(x1,x2)
andA(x1) could be calculated correctly, which means
that the constraint conditionC = 0 is prescribed. As a
result, a control law is derived and can be expressed as

τ = −A+(x1)

{
Fnd−a(x1,x2)−A(x1)J

T
r KtFnd

}
+(I−A+(x1)A(x1))k, (13)

where it is assumed thatFt = KtFn ≈ KtFnd. Kt is
an empirical coefficient,I is a l × l identity matrix,Fnd

is the desired constrained forces,A(x1) is defined in (7)
andA+(x1) is the pseudoinverse matrix of it,a(x1,x2)
is also defined in (7) andk is an arbitrary vector which is
defined as
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k =
∼
Jr

T

(q)
{
Kp(rd − r) +Kd(ṙd − ṙ)

}
, (14)

whereKp andKd aregain matrices for position and the
velocity control by the redundant degree of freedom of
A(x1), rd(q) is the desired position vector of the end-
effector along the constrained surface andr(q) is the
real position vector of it. (14) describes the 2-link rigid
manipulator’s arm compliance, we have to setKp and
Kd with a reasonable value, otherwise high-frequency
response of position error will appear. The controller pre-
sented by (13) and (14) assumes that the constraint con-
dition C = 0 be known precisely even though the grind-
ing operation is a task to change the constraint condition.
This looks like to be a contradiction, so we need to ob-
serve time-varying constraint conditions in real time by
using grinding tip as a touch sensor. The time-varying
condition is estimated as an approximate constrained
function by position of the manipulator hand, which is
based on the estimated constrained surface location. The
estimated condition is denoted bŷC = 0(in this paper,
“ ˆ ” means the situation of unknown constraint condi-
tion). Hence,a(x1,x2) andA(x1) including ∂Ĉ/∂q
and∂/∂q(∂Ĉ/∂q) are changed tôa(x1,x2) andÂ(x1)
as shown in (16) and (17). They were used in the later
experiments of the unknown constrained condition. As
a result, a controller based on the estimated constrained
condition is given as

τ̂ = −Â
+
(x1)

{
Fnd−â(x1,x2)− Â(x1)J

T
RFt

}
+(I− Â

+
(x1)Â(x1))k, (15)

mc
−1∥ ∂Ĉ

∂r
∥{−[

∂

∂q
(
∂Ĉ

∂q
)q̇]q̇ + (

∂Ĉ

∂q
)M−1(h+ g)}

△
= â(x1,x2) (16)

mc
−1∥ ∂Ĉ

∂r
∥{(∂Ĉ

∂q
)M−1} △

= Â(x1) (17)

It can be found from (7) and (15) that the constrained
force always equals to the desired one explicitly if the
estimated constraint condition equals to the real one, i.e.,
C = Ĉ andFt = 0. This is based on the fact that force
transmission is an instant process. In the next section, we
will introduce an estimation method which is used to get
Ĉ in current time.

3.2 On-line Estimation Method of Constraint
Now shape-grinding method is given to be solved in

our research. But how to estimate the unknown constraint
surface is the nodus and key point. Here, an unknown
constrained condition is assumed as following,

Assumptions:
1. The end point position of the manipulator during per-
forming the grinding task can be surely measured and up-
dated.
2. The grinding task is defined inx− y plane.

(x0; y0)
(xd; yd)

(xi; yi)(xiÄ1; yiÄ1)

(xi+1; yi+1)

j Ä th grinding surface

link 1

link 2

grinder

f j(xi) = yi = 0:5173

Fig. 3 Situationof known constraint surface model

(x0; y0)
(xd; yd)

(xi; yi)
(xiÄ1; yiÄ1)

(xi+1; yi+1)

j Ä th grinding surface

link 1

link 2

grinder

f j(xi) = yi =?

Fig. 4 On-lineestimation model

3. When beginning to work, the initial condition of the
end-effector is known and it has touched the work object.
4. The chipped and changed constraint condition can be
approximated by connections of minute sections.

Some relations between position value and time value
are written here, in this section, you’d better remember
these relations because it will help you understand the
concept of “on-line estimation method”.

xi−1 = x(ti−1) = x(t0 + (i− 1)∆t), (18)

xi = x(ti) = x(t0 + i∆t), (19)

xi+1 = x(ti+1) = x(t0 + (i+ 1)∆t). (20)

Before on-line estimation method is introduced, let’s
take a look at the situation of known flat constraint sur-
face. For example, just like the grinding surface shown
in Fig. 3, the expression of this surface is straight linear
equation

f j(xi) = yi = 0.5173(i = 0, 1, 2, 3...n), (21)

and point (xi, yi) is the current position of grinding
robot’s end-effector. As a result, points before(xi, yi)
have been already ground by grinder whent <= t0+i∆t.
In the next moment, when timeti+1 = t0 + (i + 1)∆t,
constraint condition

Cj
i+1 = y − f j(xi) = 0 (22)

can be used for calculation of deriving torqueτ . And
also, grinder will move to next point(xi+1, yi+1) with
no hesitation driven by the input torqueτ . By “no
hesitation”, it means on this known surface, grinder
has nowhere to go but point(xi+1, yi+1), since this
whole grinding surfacef j(xi) = yi = 0.5173(i =
0, 1, 2, 3...n) is determined obviously. However, we
all know that the grinding surface on work-piece after
ground will turn into some kind of irregular shape that no
mathematic equation can express. What should we do to
obtain the future constraint conditionCj

i+1 if the grinding
surface is unknown? Like the situation shown in Fig. 4,
the grinding surface is not a simple straight line or some
curve line which can be defined and expressed by some
certain curve equation, after current timeti = t0 + i∆t,
where should the grinder go? Grinding robot has no idea
since input torqueτ cannot be derived without constraint
conditionCj

i+1. To solve this problem, we consider that
some kind of on-line estimation function should be uti-
lized to imitate the unknown grinding surface, in order to
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(xiÄ1; yiÄ1)
(xi; yi)

f ji (xiÄ1) = yiÄ1 f ji (xi) = yi

f j
0

i+1(xi) = f
j0

i (xi)

Ii+1 = [xi; xi+1]

Ii = [xiÄ1; xi]

Fig. 5 Fitting by quadratic spline curve

obtain an unknown constraint condition̂Cj
i+1, which can

be used to calculate the input torqueτ̂ .
Therefore, now let’s take a look at Fig. 4, in current

timeti = t0+i∆t, end-effector of grinding robot is at po-
sition(xi, yi), so far, point(xi−1, yi−1) and point(xi, yi)
have become known because they were just ground by
the grinder in the momentti−1 = t0 + (i − 1)∆t and
ti = t0+(i)∆t and the information of point(xi−1, yi−1)
and(xi, yi) can be derived through the position of robot’s
end-effector. Now building an estimation function going
through these two points, for example, a quadratic spline
function

f ji (xi) = fspline(xi) = yi

= αi(x− xi−1)
2 + βi(x− xi−1) + γi

x ∈ [xi−1, xi](i = 0, 1, 2, 3...n), (23)

we can figure out the coefficientsαi, βi andγi uniquely
according to the information of points(xi−1, yi−1),
(xi, yi) and derivation at point(xi, yi) as follows.

Firstly, let f ji (xi) satisfy the following conditions
shown in Fig. 5.

(A) Go through two ends of the interval

yi−1 = f ji (xi−1) (24)

yi = f ji (xi) (25)

(B) First-order differential of the spline polynomials
are equal at the end-point of adjoined function.

f j
′

i+1(xi) = f j
′

i (xi) (26)

From the relation among (23), (24), (25) and (26), we can
obtain:

γi = yi−1, (i = 1, 2, · · ·, n) (27)

βi+1 = 2ui − βi, (i = 1, 2, · · ·, n− 1) (28)

αi =
βi+1 − βi

2hi
, (i = 1, 2, · · ·, n− 1) (29)

Where,hi = xi − xi−1, ui = yi−yi−1

hi
. The above-

mentioned result can update the constrained conditional
expressionĈj

i+1 step by step.
Making an expansion of the interval between point

(xi−1, yi−1) and point(xi+1, yi+1) on the grinding sur-
face which is shown in Fig. 6, we can see the first half
of grinding surface before the current position - point
(xi, yi) is shown by black line, which means this part has
been already ground, and second half after point(xi, yi)
is shown by break point line, which means this part has
not been ground yet. Now let’s pay our attention on the
interval between point(xi, yi) and point(xi+1, yi+1),
which means this part has been estimated by quadratic

Current position of grinder

grinder
Ground surface

Unground surface

ttitiÄ1 ti+1

(xi+1; yi+1)

(xiÄ1; yiÄ1)
(xi; yi)

Time interval that              is usedĈji+1

Fig. 6 Expansionof interval between point(xi−1, yi−1) and point

(xi+1, yi+1) on the on-line estimation model

spline function. With the estimation function the next
point (xi+1, yi+1) can easily be found to be known, and
then this point can be the position where grinder should
go in the next moment whenti+1 = t0+(i+1)∆t, At the
same time, this imitative function can be used as the on-
line estimation function to obtain the unknown constraint
condition

Ĉj
i+1 = y − f ji (x)

= y − [αi(x− xi−1)
2 + βi(x− xi−1) + γi] = 0,

(xi ≤ x ≤ xi+1) (30)

during the period when grinder goes from point(xi, yi) to
point(xi+1, yi+1), which means in this unknown interval
on the grinding surface, the future unground part(xi, yi)
to (xi+1, yi+1) can be ground by this on-line estimation
method based on the information obtained from already
ground part(xi−1, yi−1) to (xi, yi). So, in the situation
of unknown constraint surface, using this on-line estima-
tion method point to point, the problem for grinding robot
that it doesn’t know where it should go in future time can
be solved theoretically.

4. EXPERIMENT
In this section, we verify the feature of the proposed

controller (13). In the previous papers[11],[12] we have
already confirmed the ability in on-line shape measure-
ment based on spline approximation (on-line estimation
of the constraint condition̂Cj

i+1) and continuous shape-
grinding. Whereas alloy model of work-piece to be
ground has been just one type, and the performance of
proposed force / position controller has not been con-
firmed for various types of alloy models with different
hardness. In other words, it is necessary to confirm
whether its performance is independent of alloy model
or not. Therefore this section shows the experimental re-
sults of model-independent force / position hybrid control
by using three types of alloy models with different hard-
ness. Fig. 2 shows the experiment’s grinding task. In
Fig. 2, we can find that the desired surface is known (it
can be determined by us, here we use (31) as this desired
surface)

fd(xi) = 0.5173 +
∣∣∣0.015 cos(3× 5πxi −

π

2
)
∣∣∣ [m]

(0.0[m] ≤ xi ≤ 0.2[m]) (31)

and alsothe initial flat surface is known asf1(xi) =
0.5173[m]. Here we notice that although the initial
constraint surfacef1(xi) and desired constraint surface
fd(xi) are known already, those functionsf j(xi) who

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13), 
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 76



Fig. 7 Desiredconstraint forceFnd (left) and real constraint force

Fn measured by force sensor (right) (Alloy type: S45C)

Fig. 8 Grindingpositionxi (left) and its velocityẋi (right) (Alloy

type: S45C)

Fig. 9 Desiredconstraint forceFnd (left) and real constraint force

Fn measured by force sensor (right) (Alloy type: A2017P)

Fig. 10 Grindingpositionxi (left) and its velocityẋi (right) (Alloy

type: A2017P)

can express the constraint working surfaces between
f1(xi) andfd(xi) are unknown. Therefore, we utilize
the quadratic spline function to estimate them by means
of f j(xi) = fspline(xi). The initial constraint surface
to be ground is defined as(x, y) = (0.0, 0.5173) ∼
(0.2, 0.5173)[m] in time 5.0[s], and the desired velocity
along the surface is 0.04[m/s]. The desired forceFnd is
set asF j

nd(xi) = k′∆hj(xi). k′ is set to be 666 and
∆hj(xi) = fd(xi) − f j(xi) indicates the distance be-
tween the current surface and desired surface as shown
in Fig. 2. Fig. 7 and Fig. 8 give the experimental result
for alloy type S45C with Vickers hardness 170-195 [HV].
The result of Fig. 9 and Fig. 10 is for alloy type A2017P
with Vickers hardness 125-130 [HV]. And the result of
Fig. 11 and Fig. 12 is for alloy type A5083P with Vick-
ers hardness 80-90 [HV]. One trial takes 5 [s] and the
number of trials is 10 in these experimental results. So
the experiment of each alloy type takes 50 [s]. Fig. 7,
Fig. 9 and Fig. 11 show desired constraint forceFnd and
real constraint forceFn measured by force sensor. Fig.
8, Fig. 10 and Fig. 12 show grinding positionxi and
the velocityẋi. From these figures, it can finds that the
proposed controller (13) can decouple position and force
control independent of alloy models although the results
of real constraint force and grinding velocity are affected
by grinding.

5. CONCLUSIONS

In order to verify the feature of the proposed force-
sensorless force/position hybrid control, the experiments
of the proposed force/position hybrid control method

Fig. 11 Desiredconstraint forceFnd (left) and real constraint force

Fn measured by force sensor (right) (Alloy type: A5083P)

Fig. 12 Grindingpositionxi (left) and its velocityẋi (right) (Alloy

type: A5083P)

were executed for three types of alloy models with differ-
ent hardness. From the experimental results, it is found
that the proposed controller can decouple force and po-
sition control for continuous shape-grinding independent
of alloy models. As future work, the relation between
hardness of alloy model and shape to be ground will be
explored in order to utilize in many robotic control fields.
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