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Abstract: Although most of existing airships employ control methods by combining propellers and rudders, such a control
approach has the problem that the maneuverability is deteriorated if their traveling speed is slow. In this research, “X4-Blimp”
controlled by only four propellers is proposed. Since the X4-Blimp can control its position and attitude by regulating the output
of four propellers, it can realize high maneuverability, irrespective of its traveling speed. However, it is not easy to control the
X4-Blimp, because it is an underactuated system. This paper proposes a method for controlling the X4-Blimp by switching two
controllers, one of which is constructed by combining models that include nonlinear terms and models that only include linear
terms, where those are separated from the derived dynamic model. The effectiveness of the proposed method is verified by some
simulations.
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1 INTRODUCTION
In recent years, unmanned aerial vehicles are being ex-

pected to be used for the vegetational observation and the
information collection of disaster sites [1]. Especially, air-
ships that can float by its own buoyancy are attractive, be-
cause they are effective in energy consumption. Small air-
ships called “blimp” have been developing to make the man-
agement easy. Although most of existing airships employ
control methods by combining propellers and rudders, such
a control approach has the problem that the maneuverabil-
ity is deteriorated if their traveling speed is slow because the
airflow received by rudders is weakened. In this research,
“X4-Blimp” is propsed as a blimp controlled by only four
propellers without any rudders, and the objective aims at con-
trolling it.

This paper is organized as folllows: the proposed X4-
Blimp is explained in section 2. A dynamic model is de-
rived in section 3 and partial underactuated controllers are
designed in section 4. Logical switching rules are created in
section 5, simulaton results are shown in section 6 and the
conclusion is drawn in secton 7.

2 OVERVIEW OF THE X4-BLIMP
2.1 Structure of the X4-Blimp

The X4-Blimp proposed in this research is composed of
an envelope, a gondola and propellers as shown in Fig. 1.
The envelope is filled with helium gas to balance airframe
mass with the buoyancy. The envelope form is a spheroid
to decrease air resistance for traveling direction. The gon-
dola includes batteries and controllers, and it is suspended
from the envelope. The gondola form is a rectangular solid
to maintain the space for the controllers etc. and simplify a
calculation of the moment of inertia. The four propellers are
attached on up, down, left and right sides of the gondola with
the same distance from the center of the gondola.

Fig. 1. Definition of the coordinates
　

2.2 Definition of the coordinates
In general, when rigid body motion is considered, the cen-

ter of gravity of the rigid body is discussed as the representa-
tive point. However, the X4-Blimp motion is considered with
the center of the gondola as a representative point in this pa-
per. A definition of coordinates is shown in Fig. 1, and the
robot coordinateC is defined such that the origin is the center
of the gondola, positive X-axis is set as the forward direction
of the airframe, positive Y-axis is set as the right direction of
the airframe, and positive Z-axis is set to be downward per-
pendicular to the airframe. Similarly, the world coordinate
E is a right-handed coordinate where positive z-axis is set to
be vertically downward. The center position of the gondola
is represented by ξ = [x, y, z]T in the world coordinate, and
the rotational angles for roll, pitch, and yaw in the robot coor-
dinate system are represented as φ, θ and ψ respectively, then
the attitude of the gondola is represented by η = [φ, θ, ψ]T .
A rotation matrix R to transform the robot coordinate to the
world coordinate is derived as follows:

R =

⎡
⎣ cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

⎤
⎦ (1)
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Fig. 2. Concept of the proposed controller
　

where cA is cosA and sA is sinA.

3 DERIVATION OF DYNAMIC MODEL
A dynamic model of the X4-Blimp is derived by refer-

ing to X4-AUV studied in Watanabe et al. [2], the dynamic
model of the X4-Blimp is derived as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẍ = (cos θ cosψu1)/m
ÿ = (cos θ sinψu1)/m
z̈ = (− sin θu1)/m

φ̈ = (θ̇ψ̇(IY − IZ) + u2)/IX
θ̈ = (φ̇ψ̇(IZ − IX)− Jpψ̇Ω + lu3)/IY
ψ̈ = (φ̇θ̇(IX − IY ) + Jpθ̇Ω+ lu4)/IZ

(2)

where the mass of the airframe is m, the moment of inertia
for each axis is represented by IX , IY and IZ respectively,
the moment of inertia of the propeller is Jp and Ω = ω2 +
ω4−ω1−ω3. When four propellers are numbered from 1 to 4
in the clockwise from the upper propeller and the direction of
rotatinal velocity of each propeller is positive if it is defined
as clockwise. And the input u1 of translational motion, the
input u2 of roll motion, the input u3 of pitch motion and the
input u4 of yaw motion are represented by

u1 = b(ω2
1 + ω2

2 + ω2
3 + ω2

4) (3)

u2 = d(−ω2
2 − ω2

4 + ω2
1 + ω2

3) (4)

u3 = b(ω2
1 − ω2

3) (5)

u4 = b(ω2
2 − ω2

4) (6)

4 DESIGN OF PARTIAL UNDERACTUATED

CONTROLLERS
Since the system of the X4-Blimp represented by the dy-

namic model of Eq. (2) is an underactuated system with
four inputs and 12 states, it is different to realize underac-
tuated control. As shown in Fig. 2, two partial underactu-
ated controllers for a model with 4 inputs 10 states are de-
signed by combining a controller for a 2-input/4-state partial
model with a controller for a 2-input/6-state partial model.
The whole system is controlled by switching these two partial
underactuated contollers. To perform a chaind from transfor-

mation, the dynamic model is partially linearized such that

ẍ = w1

ÿ = tanψw1

z̈ = − tan θ secψw1

φ̈ = w2

θ̈ = w3

ψ̈ = w4

(7)

Then, the inputs are transformed as follows

w1 = cos θ cosψu1/m (8)

w2 = (θ̇ψ̇(IY − IZ) + u2)/IX (9)

w3 = (φ̇ψ̇(IZ − IX)− Jpψ̇Ω+ lu3)/IY (10)

w4 = (φ̇θ̇(IX − IY ) + Jpθ̇Ω + lu4)/IZ (11)

The partial underactuated controller 1 is designed from a 2-
input/6-state partial model for x, ψ and y, and from a 2-
input/4-state partial model for φ and θ. The partial underac-
tuated controller 2 is designed from a 2-input/6-state partial
model for x, θ and z, and from a 2-input/4-state partial model
for φ and ψ. When a chained form transformation in [4] is
applied, the 2-input/6-state partial model for x, ψ and y is
denoted by

z11 = h1 = x (12)

z12 = Lfh1 = ẋ (13)

z21 = Lg1Lfh2 = tanψ (14)

z22 = LfLg1Lfh2 =
ψ̇

cos2 ψ
(15)

z31 = h2 = y (16)

z32 = Lfh2 = ẏ (17)

Then, the inputs are transformed as follows

v1 = w1 (18)

v2 =
1

cos2 ψ
w4 +

2 tanψ

cos2 ψ
ψ̇2 (19)

From the above results, a chained from is derived by

z̈11 = v1
z̈21 = v2
z̈31 = z21v1

(20)

To apply a method in Xu and Ma [3] to Eq. (20), it is rewrit-
ten for state variables such as

ẋ1 = x2, ẋ2 = v1

ẋ3 = x4, ẋ4 = v2

ẋ5 = x6, ẋ6 = x3v1

Then the control input v1 is denoted by

v1 = −(s1 + s2)x2 − s1s2x1 (21)

where s2>s1> 0. To control the underactuated system, a
coordinate transformation is performed to design a controller
based on a discontinuous model:

zi = xi (i = 1, 2, 3, 4), zi =
xi
x1

(i = 5, 6) (22)
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The Eq. (22) is rewritten as follows

ż1 = z2 (23)

ż2 = −(s1 + s2)z2 − s1s2z1 (24)

Ż3−6 = (A1 +A2(t))Z3−6 +Bv2 (25)

where Z3−6 = [z3, z4, z5, z6]
T . Here, A1, A2(t) and B are

denoted by

A1 =

⎡
⎢⎣

0 1 0 0
0 0 0 0
0 0 s1 1
s21 0 0 s1

⎤
⎥⎦ , B =

⎡
⎢⎣

0
1
0
0

⎤
⎥⎦

A2(t) = C

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 −1 0

−(s1 + s2) 0 0 −1

⎤
⎥⎦

where C = z2
z1

+ s1. The controllability of [A1, B]
is confirmed. A controllable matrix is represented as
[B A1B A2

1B A3
1B]. It is regular because s1>0. Since

A1+BL is controllable, the feedback gain L = [l1, l2, l3, l4]
is calculated to make matrix A1+BL as the Hurwitz matrix
by the pole placement method. The control input v2 is de-
noted by

v2 = LZ3−6 = l1z3 + l2z4 + l3z5 + l4z6 (26)

Thus, since it can be stabilized to the origin, the control in-
puts for the chained form are derived as follows

v1 = −(s1 + s2)ẋ− s1s2x (27)

v2 = l1 tanψ + l2
ψ̇

cos2 ψ
+ l3

y

x
+ l4

ẏ

x
(28)

In this way, the controller for the 2-input/6-state partial model
for x, ψ and y is designed. Next, the controller for the 2-
input/6-state partial model for φ and θ is designed by a linear
feedback such as

w2 = −k1φ− k2φ̇ (k1, k2 > 0) (29)

w3 = −k3θ − k4θ̇ (k3, k4 > 0) (30)

The partial underactuated controller 1 for a model with 4 in-
puts and 10 states is designed by combining the controllers
for x, ψ and y with the controller for φ and θ.

Similarly, the partial underactuated controller 2 is de-
signed by combining the controller for the 2-input/6-state
partial model for x, θ and z with the controller for the 2-
input/4-state partial model for φ and ψ. When the partial
model for x, θ and z is transformed to a chained form, the
input transformation is denoted by

v1 = −(s1 + s2)ẋ− s1s2x

v2 = l1(− tan θ

cosψ
) + l2(− θ̇

cosψcos2 θ
) + l3

z

x
+ l4

ż

x

The control inputs based on the chained form transformation
is denoted by

w1 = v1 (31)

w3 = − cosψ cos2 θ · v2 − 2 tan θ · θ̇2 (32)

Fig. 3. Structure of energy regions

The 2-input/4-state partial model for φ and ψ is derived by a
linear feedback such as

w2 = −k1φ− k2φ̇ (k1, k2 > 0) (33)

w4 = −k3ψ − k4ψ̇ (k3, k4 > 0) (34)

The partial underactuated controller 2 for the model with 4
inputs and 10 states is designed by combining the controller
for x, θ and z with the controller for φ and ψ.

5 ENERGY REGION BASED SWITCHING

METHOD
Switching the two partial underactuated controllers for 4

inputs 10 states is considered to control an underactuated
system with 4 inputs 12 states. However, if input chatter-
ing phenomena occur when controllers are switched, an ex-
cessive burden is placed on motors. Therefore, a switching
method[5] that has multiple boundary regions is used to pre-
vent the chattering phenomena.

The energy is defined from the errors of generalized co-
ordinates. Since the state x is doubly generated from the set
of (x, ψ, y) and (x, θ, z), and similarly the corresponding
attitude angle φ is also doubly generated from the set of (φ,
θ) and (φ, ψ), the errors for the stabilization to the origin are
directly represented by ψ, y, θ and z because both partial un-
deractuated controllers always stabilize the state x and the
angle φ to the origin. Then, the energy based on the errors is
defined as follows:

E1 = ψ2 + y2 (35)

E2 = θ2 + z2 (36)

In Fig. 3, a two-dimensional plane is represented by E1 and
E2, and hysteresis like boundary lines π1 and π2 to separate
the energy plane are represented respectively by

π1(E1) = 1− e−
√
E1 (37)

π2(E1) = 2π1 (38)

In Fig. 3, the partial underactuated controller 1 is used on
the regionR1, whereas the partial underactuated controller 2
is used on the regionR2. Considering an overlapped region,
switching rules are decided as follows:

Rule 1 :
If 0 < E2 ≤ π1(E1) then st = y

Rule 2 :
If π1(E1) < E2 < π2(E1) and st−1 = y then st = y

Rule 3 :
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Table 1. Parameters for the X4–Blimp
Parameter Description Value Unit

m Mass 0.464 kg
l Distance 0.1 m
IX Roll Inertia 0.0377 kg ·m2

IY Pitch Inertia 0.0624 kg ·m2

IZ Yaw Inertia 0.0309 kg ·m2

Fig. 4. Controlled positions

If π1(E1) < E2 < π2(E1) and st−1 = z then st = z
Rule 4 :

If π2(E1) < E2 then st = z
where st represents the controller used for each rule. When
st=y, the partial underactuated controller 1 is used, whereas
when st=z, the partial underactuated controller 2 is used.
st−1 represents the controller used before one-sampling time.
According to this switching rule, the partial underactuated
controller 2 is used to control the state z, if the error energy
on z becomes large when using the partial underactuated con-
troller 1 to control states except the state z. Similarly, the par-
tial underactuated controller 1 is used to control the state y,
if the error energy on y becomes large when using the partial
underactuated controller 2 to control states except the state y.
It should be noted that, in this switching rule, the chattering
phenomena are unlikely to occur because an overlapped re-
gion between the boundary lines π1 and π2 exists to switch
the controllers.

6 SIMULATION
This simulation is intended to verify that the state vari-

ables related to the position and attitude of the airframe
converge to the origin by switching the two partial un-
deractuated controllers using the switching rules created in
previous section. The initial state of X4-Blimp is q0 =
[1, 0.5, 1, π/18, π/4, π/4]T , and the goal state is qr =
[0, 0, 0, 0, 0, 0]T . The physical parameters used for simu-
lation are shown in Table 1. The feedback gains k1=0.8,
k2=1.2, k3=0.6, k4=0.7, s1=1/40, s2=0.45, l1=−0.18,
l2=−0.68, l3=−1.74 and l4=−38.7 are for the partial un-
deractuated controller 1, whereas the feedback gains k1=0.8,
k2=1.6, k3=1/30, k4=0.7, s1=1/50, s2=0.45, l1=−0.09,
l2=−0.48, l3=−0.68 and l4=−21.3 are for the partial un-
deractuated controller 2.

It is found from Fig. 4 that the positions, i.e., the states x,
y and z converge from the initial positions to the goal posi-
tions. Similarly, it is seen from Fig. 5 that all the attitudes
φ, θ and ψ converge to the desired angles. Fig. 6 shows the
energy trajectory, where it starts from the point S. It is found
that the controller 2 was switched to the controller 1 at the
point P and the energy finally converges to the origin at the

Fig. 5. Controlled attitudes

Fig. 6. Energy trajectory

point G. Switching of controllers occurs at the point P and
the state variables are changed suddenly, if the energy trajec-
tory exceeds the boundary line π1. Thus, it is confirmed that
the positions and attitudes of the X4-Blimp can be stabilized
by switching the two partial underactuated controllers.

7 CONCLUSION
In this paper, an underactuated controller has been pro-

posed for stabilizing an X4-Blimp, where two partial under-
actuated controllers were designed from the derived dynamic
model, and switching rules for switching two such controllers
were constructed by applying the conventional logical rules
based on hysteresis-like switching boundaries. The effective-
ness of the proposed method was verified by the simulation.
For future work, it needs to confirm the effectiveness of this
approach on real robot experiments.
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