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Abstract: As a solution to the SLAM problem, the extended Kalman filter or unscented Kalman filter (UKF) is often used
up to now. In the case of an offline use of estimated results, a fixed-interval smoother is available and it is expected to give
much more high accuracy. In this paper, a solution to the SLAM problem is proposed with the unscented Rauch-Tung-Striebel
(RTS) smoother (URTSS) and several experimental results are given to show the improvement of the estimation accuracy due to
the present method. In particular, the superiority of our method over the conventional UKF based method is demonstrated by
evaluating the estimated accuracy of both methods through some simulations using a mobile robot.
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1 INTRODUCTION
For the solution to the Simultaneous Localization and

Mapping (SLAM) problem [1], [2], two kinds of information
are generally used for the estimation method. One is the self-
position obtained from internal sensors such as encoders and
inertial sensors. This information is called “control inputs”.
The other is relative position to the landmarks obtained from
external sensors such as camera, laser range finder, etc. This
information is called “measurements”. However, the both
information include noises and the exact position is not ac-
quired. Therefore, probabilistic methods to integrate the both
are applied for localization and map building.

Up to now, as a solution to the SLAM problem, extended
Kalman filter (EKF) that is one of probabilistic estimation
methods, is mainly used. However, the EKF has two prob-
lems: one is less-accuracy in the case of the system with any
strong nonlinearity because of linearization by Taylor expan-
sion, and the other is that the derivative of model must be
calculated for linearization. To overcome these weak points,
Julier et al. [3] proposed a novel method so-called Unscented
Kalman Filter (UKF). The UKF based on using Unscented
Transform (UT) excludes the derivative of model to improve
the problems of the EKF and can estimate the state of non-
linear systems accurately.

The SLAM solutions using the EKF and the UKF are
available online estimation. That is, it is possible to estimate
the latest self-position and the optimal map while capturing
the data. On the other hand, it is sometimes considered that
there needs a precise trajectory and map information after
completing the exploration. For instance, in the case of the
exploration of planetary or disaster environments, the offline
estimation is applicable.

In the case of offline use of estimation results, a fixed-
interval smoother is available and expected to give much
higher accuracy. A Rauch–Tung–Striebel (RTS) smoother,
which is one of fixed interval smoothers proposed by Rauch
et al. [4], was applied to various applications. Recent years,
Terejanu et al. [5] and Särkkä [6]proposed an unscented RTS

smoother (URTSS) with UT in order to apply it to a model
that has strong nonlinearities.

The SLAM problem is one of nonlinear estimation prob-
lems so that the URTSS is expected to contribute the im-
provement of the accuracy on this problem. Therefore, in this
paper, the solution to the SLAM problem with the URTSS is
proposed and the experimental results are given to demon-
strate the effectiveness of the present method by evaluating
the estimated accuracy through some simulations.

2 URTSS–SLAM
The objective in the URTSS–SLAM is to simultaneously

estimate the self-position and direction of the robot and the
landmark position, which are described in a composite state
vector xt such as

xt =(x, y, θ, μ1,x, μ1,y, . . .

μj,x, μj,y, . . . , μN,x, μN,y)
T (1)

where x, y and θ are the robot position and the direction (or
azimuth), which are called the posture collectively in this pa-
per. μj,x and μj,y denote the absolute position of the j-th
landmark, and the N denotes the number of landmarks.

The action model used here and the measurement model
are respectively described by

xt = g(ut−1 + ρt−1, xt−1) (2)
zt = h(xt) + εt (3)

where ut−1 is the “control” input. The action model trans-
fers the state xt−1 to xt through the action function g and
the control input is affected by the noise ρt−1. The mea-
surement model produces the measurement zt through the
measurement function h and this model is also affected by
the noise εt.

In this paper, the estimate for xt is represented by using
the mean mt and the covariance P t. The URTSS–SLAM is
manly composed by the following two-steps:
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Table 1. Simulation conditions

Variable
Meaning and Value Unit

parameter
Simulation time T 76 [s]

Sampling interval Δt 0.5 [s]

Control noise const.

a1 0.02
a2 0.02
a3 0.02
a4 0.02

Measurement noise
σr 0.05 [m]S.D. for relative distance

Measurement noise
σφ 2.0 [deg]S.D. for relative angle

1. Using the UKF-SLAM algorithm for the time interval
[0 T ], memorize the estimates for the self-position and
direction of the robot and for the landmark position.

2. Re-estimate the states using the URTSS–SLAM algo-
rithm backward in time from time T .

The UT technique and both the UKF–SLAM and the
URTSS-SLAM algorithms are not described here, but see
e.g., Terejanu et al. [5] and Särkkä [6] for the detailed ex-
planations.

3 SIMULATIONS
Simulation experiments are presented to check the esti-

mation accuracy of the proposed method, where the present
URTSS–SLAM is compared with the conventional UKF–
SLAM.

3.1 Simulation conditions
Assume that the robot navigates with a constant velocity

along the path depicted in Fig. 1, where the robot moves from
the coordinate (0, 0) counterclockwise and the landmarks are
assigned every 1.3 [m] in a 4 [m]×6.5 [m] rectangular area.
The estimation accuracy is evaluated with 100 trials, where
the action and measurement models are given by the previ-
ous sections. It is assumed that the measurement rage of the
landmarks is restricted such as ±120 [deg] measured from
the centerline of the direction of movement and 4 [m] in max-
imum detection distance. Furthermore, following the results
of Julier et al. [3] and Kim et al. [7], the parameters used in
the UT were set to α = 0.002, β = 2, and κ = 3− n, where
note that other simulation conditions are shown in Table 1.

3.2 Action model
An odometric model [8] is used for the action model,

where the input to the model is the amount of the robot pos-
ture change obtained from the odometry. Note that the odom-
etry is a measurement rigorously, so that velocity information
should be added to the state, if the odometry is used as a mea-
surement. If it is regarded as an input in general, then it is
possible to reduce the number of states. The present paper
follows such an approach.

Fig. 1. Simulation environment

Fig. 2. Motion Model

The robot posture is defined as follows. Let us consider a
robot moving on a plane, and its posture is described by

p =
(
x y θ

)T
(4)

where x and y are the robot position, and θ is the az-
imuth of the robot. Assume that the robot moved from
pt−1 to pt. Then, the odometry returns noisy p̂t−1 =(
x̂t−1 ŷt−1 θ̂t−1

)T
and p̂t =

(
x̂t ŷt θ̂t

)T
. The con-

trol input can be obtained as a noisy value that includes
noises as shown in Fig. 2, which is given by

ût−1 =
(
δ̂r1, t−1 δ̂l, t−1 δ̂r2, t−1

)T
(5)

Here, each component of the control input ût−1 is as follows:
δ̂r1, t−1 is the amount of rotation before moving, δ̂l, t−1 is the
amount of movement, and δ̂r2, t−1 is the amount of rotation
after moving. ût−1 can be then calculated as below:

ût−1 =

⎛
⎝atan2(ŷt − ŷt−1, x̂t − x̂t−1)− θ̂t−1√

(x̂t − x̂t−1)2 + (ŷt − ŷt−1)2

θ̂t − atan2(ŷt − ŷt−1, x̂t − x̂t−1)

⎞
⎠ (6)

Equation (2) representing the action model is reduced to

xt = g(ut−1 + ρt−1, xt−1)

= g(ût−1, xt−1)

= xt−1 +

⎛
⎜⎜⎝
δ̂l, t−1 cos(θt−1)

δ̂l, t−1 sin(θt−1)

δ̂r1, t−1 + δ̂r2, t−1

0

⎞
⎟⎟⎠ (7)
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Fig. 3. Measurement model

in which ρt−1 is the action noise defined by

ρt−1 =

⎛
⎝ N (0, a1δ

2
r1, t−1 + a2δ

2
l, t−1)

N (0, a3δ
2
l, t−1 + a4(δ

2
r1, t−1 + δ2r2, t−1))

N (0, a1δ
2
r2, t−1 + a2δ

2
l, t−1)

⎞
⎠ (8)

where a1 to a4 are the parameters that determine the amount
of noises.

3.3 Measurement model
A rangefinder model is used for the measurement model.

This model uses the measurements consisting of the relative
distance r between the robot and a landmark, and the relative
angle φ. When defining the robot posture as (x, y, θ)T , the
j-th landmark position as (μj,x, μj,y), and the measurements
as z = (r, φ), the measurement model in Eq. (3) can be
rewritten by (see Fig. 3)

z =h(x) + ε

h(x) =

( √
(μj,x − x)2 + (μj,y − y)2

atan2(μj,y − y, μj,x − x)− θ

)

ε =

(N (0, σ2
r)

N (0, σ2
φ)

)
(9)

where σr denotes the standard deviation for the relative noise
and similarly σφ denotes one for the relative angle.

3.4 Results and considerations
Figures 4 and 5 show the estimation results of one trial

for both methods, where in the figures the red dot denotes
the landmark position, the black solid line is the movement
trajectory of the robot, the light-blue broken line denotes the
odometry value, and the blue × and solid line are the esti-
mation results. For the estimation of self-position, it is found
that both the URTSS-SLAM and UKF-SLAM methods have
a high accuracy, compared to a method of using only the
odometry. In particular, the estimate produced by using only
the odometry displays a large deviation around the terminal
point, whereas the both estimation methods give good esti-
mates that reach the goal point. This is attributed to the fact
that the both methods estimate the self-position by using the
information on landmarks. It is seen that they also give all
the landmark positions, i.e., the correct map estimate.

Figures 6 to 8 shows the time variation of the rms error
in each axis of the robot posture. The broken line denotes
the rms error for the UKF–SLAM, whereas the solid line is
the rms error for the URTSS–SLAM. The rms error for the
URTSS-SLAM is smaller in most of time durations than that
for the UKF-SLAM. It is seen from Fig. 6 that the rms error
in x-coordinate is gradually improved in its accuracy for the

Fig. 4. Estimated robot paths and landmarks (UKF–SLAM)

Fig. 5. Estimated robot paths and landmarks (URTSS–
SLAM)

latter half of estimation: i.e., its accuracy recovers closely to
that of around t = 10 [s].

Table 2 shows the time average of the rms error for each
axis of the self-position. It is seen that the URTSS-SLAM
has about 5.6 [%]smaller rms error in the average of each
axis, compared to the UKF-SLAM, so it is claimed that an
improved accuracy has been obtained for the self-position es-
timate in the SLAM problem.

Figures 9 and 10 shows the rms error for the landmark po-
sition. It is found from Fig. 9 that the rms error is relatively
large because the landmark is estimated with less number of
measurements at start, but it becomes gradually small and

Table 2. Simulation results of localization

Algorithm RMS error
x [mm] y [mm] θ [rad]

UKF–SLAM 36.233 23.145 0.018659
URTSS–SLAM 35.289 21.159 0.017063
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Fig. 6. RMS error for x coordinate

Fig. 7. RMS error for y coordinate

converges as time goes and the number of measurements in-
creases. Two rms errors, related to the landmarks denoted
by blue and yellow lines, become large once at about 10 [s]
and 12 [s], decrease at about 53 [s], and after that they con-
verge to small values. This is based on the fact that the robot
measured those landmarks several times at about 10 [s] and
12 [s], moved out from the measurable range, returned to
the original position at about 53 [s], and finally started to
re-measure such landmarks. The rms error of the URTSS–
SLAM is small and constant approximately, as seen from
Fig. 10, because from the property of the URTSS the land-
marks are estimated by using all the information for the esti-
mation interval.

Table 3 shows the estimation error for the landmarks,
where a landmark error was extracted when the minimum
estimation covariance was achieved, and was also averaged
by the number of landmarks and trials. The estimation er-
ror of the landmarks with the URTSS–SLAM is small about
6.8 [%], compared to that with the UKF-SLAM, so that it is
claimed that the map accuracy has been improved, as well as
the estimation accuracy of the self-position for the robot.

4 CNCLUSIONS
In this paper, the URTSS has been applied to the SLAM

problem and a URTSS–SLAM has been proposed. The
URTSS–SLAM is the technique of having aimed at the im-
provement in accuracy by reprocessing the estimation result

Fig. 8. RMS error for θ coordinate

Fig. 9. RMS error for landmark location (UKF–SLAM)

Fig. 10. RMS error for landmark location (URTSS–SLAM)

Table 3. Simulation results of landmark locations

Algorithm error of landmark
locations [mm]

UKF–SLAM 41.049
URTSS–SLAM 38.254

due to the UKF–SLAM by the URTSS. Then, the estima-
tion accuracy of the proposed URTSS–SLAM and the con-
ventional UKF–SLAM was compared through the simulation
experiment. As a result, compared to the conventional tech-
nique, the estimation accuracy for both the self-position and
the map was improved, so it can be said that the URTSS–
SLAM is effective in an off-line SLAM problem.
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