
Power Consumption Reduction by

Dynamic Core-Counts Control with Power Gating

 Kazuyuki TAMOTO
1
, Kunihito YAMAMORI

2
, Masaru AIKAWA

3

1
Graduated school of Engineering, University of Miyazaki

2
Faculty of Engineering, University of Miyazaki

3
Technical Center, Faculty of Engineering, University of Miyazaki

(Tel: +81 985 58 7589, Fax: +81 985 58 7589)

2
yamamori@cs.miyazaki-u.ac.jp

Abstract: Power Gating (PG) technology is known that it reduces static power consumption by leakage current. Linux

operating system on multi-core processor evenly assigns processes to each core. Linux scheduler assigns processes to the core

which has the fewest number of processes even if the core is idle. It makes an idle core in PG state change to active state, and

avoids reducing power consumption. In this paper, we propose a method to reduce electric power consumption by effective use

of PG. Our method modify linux kernel to change number of active cores in system dynamically, and apply PG to idle cores

immediately. The number of active cores is changed according to the system load. Experimental results show that our proposed

method reduces about 8kWh electric power consumption from the original kernel with keeping performance.

Keywords: Power Management, Power Gating, Linux Kernel

1 INTRODUCTION

Recent computers are required low electric power

consumption in terms of thermal problem, running cost, and

environmental problems. Fine process rule improves

performance of CPU, and reduces total electric power

consumption. However, increasing of leakage current

becomes as a large problem. Leakage current is a flow

through insulator of transistor when transistor is in off state,

and it causes unnecessary power consumption. So many

researchers try to reduce it.

To reduce electric power consumption of CPU, Clock

Gating[1] (CG) is used in long time. As shown in Figure 1,

CG technology stops to supply a clock signal for a CPU

core and reduces power consumption. CG is easy to

implement and efficient to reduce power consumption.

However, leakage current remains in the clock circuit.

Recently, Power Gating[2] (PG) is attracted in attention. PG

technology stops to supply electric power for cores as

shown in Figure 2. Thus, PG prevents to appear leakage

current and reduces power consumption by leakage current.

PG is now replacing with CG, and implementing in many

kinds of CPUs.

CG and PG can work when cores are in idle state only.

Current linux system on multi-core processor evenly

assigns processes to each core. A new process is assigned to

the core which has the fewest number of processes even if

the core is in idle state. It means PG cannot work effectively.

In this paper, we propose a method to use PG

effectively by modifying linux kernel on multi-core

processor. Proposed method dynamically changes the

number of active cores in order to load of linux system, and

immediately apply PG for idle cores. While the system load

is low, our method does not assign a new process to the idle

cores to avoid interrupting PG state. As a result, power

consumption of CPU is reduced. Our method also changes

the number of active cores according to current load of

system to keep system performance.

Fig. 1. A model of Clock Gating

Fig. 2. A model of Power Gating

2 RELATED WORKS

Some works have been reported for effective use of PG

to reduce electric power consumption. When CPU switches

its state from active/PG to PG/active, additional electric

power is consumed. It means that frequently change of

CPU state affect power consumption. Kimura et al.[3] point

out that additional electric power depends on CPU

temperature, and they proposed a method that changes CPU

state according to CPU temperature when processes

frequently stay in WAIT state.

When CPU switches its state from active to PG, CPU

must save the internal conditions such as program counter

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 49

to low level memory, and it takes additional time. Otomo et

al.[4] propose a method that CPU can quickly switch from

active to PG by use of an additional memory. By using of

the additional memory, CPU does not need to save its

internal conditions to low level memory.

These studies assume to use original CPU or FPGA,

there are few researches for general CPUs.

3 IMPROVEMENT OF LINUX KERNEL

We modify a linux kernel to achieve a system that

effectively uses PG on general multi-core processor. The

system periodically watches load of CPU. When the load of

system is low, kernel turns a CPU core off, and applies PG

immediately. Meanwhile the load of system becomes high,

our method wake core in PG state up. Thus, the system

reduces power consumption with keeping system

performance.

3.1 Environments

We implement proposed method in linux kernel 2.6.32

[5], and evaluate our method on Intel core i7 Nehalem

architecture processor [6] which equips PG technology.

Hyper-threading and DVFS is not used.

3.2 Dynamic Core-Counts Control

Linux kernel 2.6.32 controls on/off of core by bitmask

and scheduling domain. If a bit in bitmask is 0,

corresponding core is in off state. Scheduling domain

manages cores with hierarchical group. If a process should

move other core, it is preferentially moved to the core

belonging to the same group. Figure 3 illustrates a concept

of scheduling domain of hyper-threading dual core

processor. If a process in core0 should move, preferential

destination is core2. When system switches on/off of a core,

those groups are reconstructed. In this paper, all cores

belong to the same group.

Our proposed method controls the state of cores by

bitmask, and reconstructs group of scheduling domain. We

make original daemon process that watches the load of

system and changes the number of active cores at fixed

interval. In linux kernel, the lowest number of active core is

one. Thus, core0 is always online, and our daemon process

always works on core0.

Fig. 3. Scheduling domain of dual core processor with

Hyper-threading technology

3.3 Load of CPU

Our method changes the number of active cores

according to the load of system. Thus, we implement a new

function to get the load of system in linux kernel.

Equation (1) defines the load of the system. Linux

kernel manages CPU time as the sum of system time 𝑡𝑠,

user time 𝑡𝑢, idle time 𝑡𝑖 and others 𝑡𝑜. The load of k-th

core is defined as the ratio of active time to total time.

𝐿𝑜𝑎𝑑𝑘 =
𝑡𝑠 + 𝑡𝑢 + 𝑡𝑜

𝑡𝑠 + 𝑡𝑢 + 𝑡𝑖 + 𝑡𝑜

× 100(%) (1)

3.4 PG management through ACPI

Linux kernel manages CG and PG by C-states of ACPI

[6]. C-states show power states when CPU core is in idle

state. C-states consist of four level states, C0 means that the

core is in active state, and C3 means in PG state. The core

in deep level consumes low electric power. Meanwhile, the

core in deep level needs large latency when the core

changes its state from PG to active. Figure 4 illustrates

relations between electric power consumption and latency

in each C-state level. While a core is in idle state, system

changes the state from C0 to C1, C2, and C3. If a process is

assigned to a core, the core returns to C0.

Fig. 4. Power stat and latency of each state

To reduce electric power consumption on multi-core

CPU, it is important to keep the idle core in C3 state.

However, linux scheduler evenly assigns a process to the

core with the fewest number of processes, so C3 state is

frequently interrupted. To avoid this situation, we logically

removed the idle core from system as described in Section

3.2 since linux operating system cannot detect the logically

removed core, no process is assigned to the removed core,

and the core can keep C3 state. On the other hand, the

remaining cores have to work harder because the number of

cores is decreased, and it may make electric power

consumption of remaining cores increase. If the load of

system is high, this increasing of electric power

consumption can ignore because the cores work hard and

they already consume all the required electric power. If the

load of system is low, increasing of electric power

consumption of remaining cores may become a problem

since logical removing of a core prevents remaining cores

staying C1, C2 or C3.

Here we investigate the relations between the system

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 50

load and electric power consumption according to the

number of active cores. Figure 5 and Figure 6 show that

transition of load and power consumption of each number

of active cores when initial average load is about 40%, 30%,

20% and 10% in four active cores. In both figures, bars

denote the electric power consumption corresponding to the

left vertical axis, and lines denote the average load of the

system corresponding to the right vertical axis.

Fig. 5. Average load and power consumption when initial

load is 40% and 30%.

Fig. 6. Average load and power consumption when initial

load is 20% and 10%.

Figure 5 shows that power consumption is clearly

reduced when turn CPU cores off although the load of

remaining cores is increasing. This means that logical

removing of cores gives us reducing electric power

consumption even if it increases the load of the remaining

cores when the initial load of system is high. On the other

hand, reducing of electric power consumption is not clear

when the initial load of system is low as shown in Figure 6.

But electric power consumption continues to be down even

if the initial average load is 10%.

From experimental results, power consumption is

actually reduced when cores are turned off.

3.5 Threshold for core state switching

Figure 5 and Figure 6 show that system can run with

fewer cores even if load is moderately high. However, if

high load leads poor performance, system should increase

the number of active cores.

Threshold to turn the core on/off is not clear. Since

early switching from off to on leads high electric power

consumption, this switching is desirable near to 100% of

system load. Figure 5 and Figure 6 shows that the average

load of system is increased when a core is logically

removed because the processes assigned to the removed

core are distributed to other remaining cores. Therefore the

threshold to turn the core on/off should be decided by the

load of remaining cores. Suppose 𝑁 denotes the number of

remaining cores, the average load is defined by Equation

(2).

𝐴𝑣𝑔𝑙𝑜𝑎𝑑 =
∑ 𝐿𝑜𝑎𝑑𝑘

𝑁 − 1
 (𝑁 ≥ 2) (2)

When the 𝐴𝑣𝑔𝑙𝑜𝑎𝑑 becomes near to100%, it means the

system performance may down. In the following

experiments, we use 𝐴𝑣𝑔𝑙𝑜𝑎𝑑 = 90% to switch the core

state on/off.

4 EXPERIMENTS AND DISCUSSIONS

4.1 Experimental conditions

We evaluate electric power consumption and execution

time by comparing our proposed method with original linux

kernel 2.6.32. Our modified kernel watches the load of

system at every two seconds, and decides to make a core

remove or return. Test programs change 𝐴𝑣𝑔𝑙𝑜𝑎𝑑 at

random by forking small programs in many times, so

system changes the number of active cores. We measure

elapse time until the test programs have finished. Moreover,

we evaluate performance of a floating-point matrix

calculation under the modified kernel.

4.2 Results and Discussion

Figure 7 shows electric power consumption at every

second of proposed method and original kernel. The

horizontal axis is seconds, and vertical axis is actual power

consumption of whole system. Figure 7 says that our

method globally reduces power consumption. At the

beginning, the number of active cores is one in our

proposed method. Since our proposed method uses only a

few cores for several seconds from the beginning, electric

power consumption stays low. As shown in Figure 7,

electric power consumption of our kernel is lower than that

of the original kernel after 109 seconds since our kernel

finishes test programs faster than the original kernel. Figure

7 also shows that our method is effective in the case which

the electric power consumption by original kernel is more

than 165W. Our kernel employs a hard threshold to decide

on/off of a core, the curve of our kernel sometimes waves

around 40 seconds and 65 seconds.

Table 1 shows mathematical total electric power

consumption by our proposed kernel and the original kernel

calculated from Figure 7. As shown in Table 1, our method

can reduce about 8kWh from original kernel.

Table 2 shows executing time of test programs. It shows

our method is faster than original system. It is because

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 51

migration mechanism of linux kernel. Linux kernel keeps

load balance through this migration mechanism to move the

process from busy core to idle core. This migration itself

becomes overhead for execution of processes. Our test

program forks many small processes, and the kernel assigns

these processes into online cores. Since our kernel makes

some cores stay offline, migration over cores is rare case

and it reduce overhead by migration. Therefore execution

time on our kernel becomes shorter than that of the original

kernel.

Fig. 7. Comparison with electric power consumption

Table 1. Average of power consumption

Original(kWh) Proposed(kWh)

578.22 570.30

Table 2. Execution time of test programs

Original(sec) Proposed(sec)

109.20 106.11

We also evaluate execution time of floating-point

calculation by inverse matrix calculation whether our

modified kernel affects the performance of scientific

calculation. Table 3 shows the execution time of floating-

point inverse matrix calculation. “Number of processes”

denotes the number of floating-point calculation process

simultaneously executed. Table 3 says that our kernel is

about 3% slower than the original kernel. It is because the

daemon process to decide on/off of the core described in

Section 3.2. This daemon process always stays in core0. In

the case of one floating-point calculation is executed, only

the core0 is the active core. The core0 has to execute

daemon process at every two seconds, it disturbs floating-

point calculation. When we throw two floating-point

calculations simultaneously, the one finishes about 6

seconds faster than the other. It means that the process

assigned into core0 is affected by the daemon process. The

number of active cores is the same between the original

kernel and our modified kernel, so the electric power

consumption is almost the same.

 From the experiments, our method is suitable for the

systems that execute many small processes or threads with

high load. In that case, our method copes with both low

electric power consumption and faster execution.

Table 3. Processing time of floating-point calculation

Number of

Processes
Original(sec) Proposed(sec)

1 133.26 139.68

2
132.99 134.81

133.99 141.09

5 CONCLUSIONS

In this paper, we propose a method to reduce electric

power consumption on linux servers. Our method

dynamically manages the number of active cores, and

immediately applies PG for idle cores. In addition, our

method logically removes the idle cores from the system,

and makes no process assign into idle cores to keep the core

in PG state. When the system load is over threshold, our

method return the cores in PG state to active. Experimental

results show that our method copes with both low electric

power consumption and good performance for the system

executing many small processes with high load. It remains

future works to employ “soft” threshold to stable electric

power consumption and improve algorithm for core state

switching.

REFERENCES

[1] Wu Q, Pedram M, Wu X (1997), Clock-Gating and its

application to low power design of sequential circuits.

Custom Integrated Circuits Conference, 1997,

Proceedings of the IEEE 1997, pp.479-482

[2] Pakbaznia E, Fallah F, Pedram M (2008), Charge

Recycling in Power-Gated CMOS Circuits. Computer-

Aided Design of Integrated Circuits and Systems,

Vol.27, Issue.10, pp.1798-1811

[3] Kimura K, Kondo M, Amano H (2011), Fine Grain

Power Gating Control Adapting to a Change in Core

Temperature with Operating System, Vol.2011-ARC-

195 No.30, pp.1-8

[4] Otomo T, Kurihara K, Teranishi Y (2012), High-

reliabillity, Low-power and High-performance

Implementation by Memory Redundancy and Power

Gating, Vol.2012-ARC-199 No.14,pp.1-8

[5] http://www.kernel.org/

[6] Intel(R) Turbo Boost Technology in Intel(R)

Core(TM) Microarchitecture (Nehalem) Based

Processors (2008) Intel White Paper

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 52

