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Abstract

The study of four-dimensional automata as the
computational model of four-dimensinal pattern pro-
cessing has been meaningful. However, it is conjec-
tured that the three-dimensional pattern processing
has its our difficulties not arising in two- or three-
dimensional case. One of these difficulties occurs in
recognizing topological properties of four-dimensional
patterns because the four-dimensional neighborhood
is more complicated than two- or three-dimensional
case. Generally speaking, a property or relationship
is topological only if it is preserved when an arbitrary
’ rubber-sheet ’ distortion is applied to the pictures .
For example, adjacency and connectedness are topo-
logical ; area, elongatedness, convexity, straightness,
etc. are not. In recent years, there have been many in-
teresting papers on digital topological properties. For
example, an interlocking component was defined as a
new topological property in multi-dimensional digital
pictures, and it was proved that no one marker au-
tomaton can recognize interlocking components in a
three-dimensional digital picture. In this paper, we
deal with recognizability of topological components
by four-dimensional Turing machines, and investigate
some properties.

KeyWords : digital geometry,interlocking compo-
nent, one marker automaton, three-dimensional au-
tomaton, topological component, Turing machine.

1 Introduction

Digital geometry has played an important role in
computer image analysis and recognition[3]. In par-
ticular, there is a well-developed theory of topolog-

ical properties such as connectedness and holes for
two-dimensional arrays[4]. On the other hand, three-
dimensional information processing has also become
of increasing interest with the rapid growth of com-
puted tomography, robotics, and so on. Thus it has
become desirable to study the geometrical proper-
ties such as interlocking components and cavities for

three-dimensional arrays[2,5]. In[2], interlocking com-
ponents was proposed as a new topological property
of three-dimensional digital pictures : Let S1 and S2

be two subsets of the same three-dimensional digital
picture. S1 and S2 are said to be interlocked when
they satisfy the following conditions:

(1) S1 and S2 are toruses,
(2) S1 goes through a hole of S2,
(3) S2 goes through a hole of S1.

By the way, the question of whether processing
four-dimensional degital pattern in much difficult than
three-dimensional ones is of great interest from the
theoretical and practical standpoints both. In recent
years, due to the advances in many application areas
much as computer animation, motion image process-
ing, and so both, the study of four-dimentional pattern
processing has been of crucial importance. Thus, it is
very interesting to deal with the geometrical proper-
tises such as interlocking components and cavities in
a four-dimensional digital picture.

The interlocking of S1 and S2 in a four-dimentional
tape is illustrated in Fig.1. This relation may be con-
sidered as a chainlike connectivity.

It is proved that no one marker automaton can rec-
ognize interlocking components in a three-dimensional
digital picture in [2]. In this paper, we investigate
recognizability of topological properties such as inter-
locking components by three-dimensional Turing ma-
chines.

2 Preliminaries

Definition 2.1. Let Σ be a finite set of symbols.
A four-dimensional tape over Σ is a four-dimensional
array of elements of Σ. The set of all four-dimensional
tapes over Σ is denoted by Σ(4). Given a tape x ∈ Σ(4),
for each j(1≤j≤4), we let lj(x) be the length of x along
the jth axis. When 1≤ij≤lj(x) for each j(1≤ j≤4), let
x(i1, i2, i3, i4) denote the symbol in x with coordinates
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Fig. 1: Interlocking components in a four-dimensional
tape.

(i1, i2, i3, i4), as shown in Fig. 2. Furthermore, we
define

x[(i1, i2, i3, i4), (i
′
1, i

′
2, i

′
3, i

′
4)],

when 1≤ij≤i′j≤lj(x) for each integer j(1≤j≤4), as the
four-dimensional tape y satisfying the following :

(i) for each j(1≤j≤4), lj(y)=i′j − ij + 1;

(ii) for each r1,r2,r3,r4 (1≤r1≤l1(y), 1≤r2≤l2(y),
1≤r3≤l3(y), 1≤r4≤l4(y), y(r1, r2, r3, r4)=x(r1 +
i1 − 1, r2 + i2 − 1, r3 + i3 − 1, r4 + i4 − 1).
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Fig. 2: Four-dimensional input tape.

Definition 2.2. A four-dimensional nondetermi-

nistic one-marker automaton 4-NM1 is defined by the
six-tuple

M = (Q, q0, F,Σ, {+,−}, δ),

where

(1) Q is a finite set of states;

(2) q0∈Q is the initial state;

(3) F⊆Q is the set of accepting states;

(4) Σ is a finite input alphabet (♯/∈Σ is the boundary
symbol);

(5) {+,−} is the pair of signs of presence and absence
of the marker; and

(6) δ: (Q×{+,−}) × ((Σ∪{♯}) × {+,−})→
2(Q×{+,−})×((Σ∪{♯})×{+,−})×{east,west,south,
north,up,down,future,past,nomove}) is the next-
move function, satisfying the following: For any
q,q′∈Q, any a,a′ ∈ Σ, any u,u′,v,v′ ∈ {+,−}, a-
nd any d ∈ {east,west,south,north,up,down,futu-
re,past,no move}, if ((q′,u′),(a′,v′),d)∈δ
((q,u),(a,v)) then a=a′, and
(u,v,u′,v′)∈{(+,−,+,−),(+,−,−,+),(−,+,−,+),(−
,+,+,−),(−,−,−,−)}.

We call a pair (q,u) in Q×{+,−} an extended state,
representing the situation that M holds or does not
hold the marker in the finite control according to the
sign u = + or u = −, respectively. A pair (a,v) in
Σ× {+,−} represents an input tape cell on which the
marker exists or does not exsit according to the sign
v = + or v = −, respectively.

Therefore, the restrictions on δ above imply the fol-
lowing conditions. (A) When holding the marker, M
can put it down or keep on holding. (B) When not
holding the marker, and (i) if the marker exists on the
current cell, M can pick it up or leave it there, or (ii)
if the marker does not exist on the current cell, M
cannot create a new marker any more.

Definition 2.3. Let Σ be the input alphabet of 4-
NM1 M . An extended input tape x̃ of M is any four-
dimensional tape over Σ×{+,−} such that

(i) for each j(1≤j≤4), lj(x̃)=lj(x),

(ii) for each i1(1≤i1≤l1(x̃)), i2(1≤i2≤l2(x̃)), i3(1≤
i3≤l3(x̃)), and i4(1≤i4≤l4(x̃)), x̃(i1, i2, i3, i4) =
x(i1, i2, i3, i4, u) for some u ∈ {+,−}.

Definition 2.4. A configuration of 4-NM1 M =
(Q, q0, F,Σ, δ) is an element of

((Σ ∪ {♯})× {+,−})(4) × (Q× {+,−})×N4,

where N denotes the set of all nonnegative inte-
gers. The first component of a configuration c =
(x̃,(q, u),(i1, i2, i3, i4)) represents the extended input
tape of M . The second component (q, u) of c rep-
resents the extended state. The third component
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(i1, i2, i3, i4) of c represents the input head position.
If q is the state associated with configuration c, then
c is said to be an accepting configuration if q is an
accepting state. The initial configuration of M on
input x is

IM (x) = (x−, (q0,+), (1, 1, 1, 1)),

where x− is the special extended input tape of M
such that x−(i1, i2, i3, i4)=(x(i1, i2, i3, i4),−) for each
i1, i2, i3, i4 (1≤i1≤l1(x̃),1≤i2≤l2(x̃),1≤i3≤l3(x̃),1≤i4≤
l4(x̃)). If M moves determinately, we call M a four-
dimensional deterministic one-marker automaton
4-DM1.

Definition 2.5. A seven-way four-dimensional
Turing machine is defined by the six-tuple

M = (Q, q0, F,Σ,Γ, δ),

where

(1) Q is a finite set of states;

(2) q0∈Q is the initial state;

(3) F⊆Q is the set of accepting states;

(4) Σ is a finite input alphabet (♯/∈Σ is the boundary
symbol);

(5) Γ is a finite storage-tape alphabet (B∈Γ is the
blank symbol); and

(6) δ⊆(Q×(Σ∪{♯})×Γ)×(Q×(Γ−{B})×{east,west,
south,north,up,down,future,no move}×{right,left,
no move}).

If M moves determinately (nondeterminately), we
call M a seven-way four-dimensional deterministic
(nondeterministic) Turing machine SV 4-DTM
(SV 4-NTM).

Let L: N→R be a function. A seven-way four-
dimensional Turing machine M is said to be L(m)
space bounded if for all m≥1 and for each x with
l1(x)=l2(x)=l3(x)=l4(x)=m, if x is accepted by M ,
then there is an accepting computation path of M on
x in which M uses no more than L(m) cells of the stor-
age tape. We denote an L(m) space-bounded SV 4-
DTM (SV 4-NTM) by SV 4-DTM(L(m)) (SV 4-
NTM(L(m))).

Definition 2.6. Let T (M) be the set of four-
dimensional tapes accepted by a machine M , and
let £[4-DM1]={T |T (M) for some 4-DM1 M}. £[4-
NM1], etc. are defined in the same way as £[4-DM1].

We can easily derive the following theorem by using
ordinary technique[6].

Theorem 2.1. For any function L(m) ≥ log m3,
£[SV 4-NTM(L(m))]⊆Uc>0 £[SV 4-DTM(2c(L(m)))
].

3 Simulation of four-dimensional

one-marker automata by four-

dimensional Turing machines

In this section, we show the algorithms described
in the previous section are optimal in some sense. We
can get the following Theorems any using the same
technique as in the proof of Lemmas 6.2 and 6.3 in [6].

Theorem 3.1. To simulate 4 − DM1’s, (1) SV 4-
NTM ’s require Ω(m3 log(m3)) space and (2) SV 4-

DTM ’s require 2Ω(m3 log(m3)) spacespace(m≥1).

Theorem 3.2. To simulate 4-NM1’s,

(1) SV 4-NTM ’s require Ω(m6) space, and

(2) SV 4-DTM ’s require 2Ω(m6) space(m≥1).

4 Recognizability of interlocking com-

ponents in four-dimensional images

In this paper, we show that interlocking compo-
nents are not recognized by any space-bounded four-
dimensional Turing machines.

First of all, we consider a four-dimensional input
tape T3 that is 7 units in thickness. So, for some m,
T3={ (i1,i2,i3,i4) | 1≤i1,i2,i3≤ m+2,1≤i4≤7 }.
Fig.3(a)represents T3. Now we define two different
5×5×5 patterns as shown in Fig.3(b)(c). Then we
consider an arbitrary n-by-n matrix of those 5×5×5
patterns (see Fig.3).

a 

m+2

m+2

m+2

m+2

m+2

m+2

time axis

(the 4th axis)

Fig. 3: Four-dimensional input tape including inter-
locking components T3[2].

Then, we can get the following lemma from Lemma
2.1 in [2].
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Lemma 4.1. 4-DM , cannnot recognize interlocking
components of an arbitrary given digital picture.

From Theorem 3.1 and Lemma 4.1, we can get the
following.

Theorem 4.1. Interlocking components are
not accepted by any SV 4-DTM (L(m))(SV 4-
NTM(L(m))) for any function L(m)

such that limm→∞[L(m)/2m
3logm3

] = 0
(limm→∞[L(m)/m3log m3] = 0)(m≥1).

Next, we can get the following lemma by using a
technique similar to that in the proof of Lemma 2.1 in
[2].

Lemma 4.2. 4-ND1 cannnot recognize interlocking
components of an arbitrary given digital picture.

From Theorem 3.2 and Lemma 4.2, we can get the
following.

Theorem 4.2. Interlocking components
are not accepted by any SV 4-DTM(L(m))
(SV 4-NTM(L(m))) for any function

L(m) such that limm→∞[L(m)/2m
6

] = 0
(limm→∞[L(m)/m6]=0)(m≥1).

5 Conclusion

In this paper, we dealt with recognizability of topo-
logical components by four-dimensional automata,
and showed that interlocking components are not rec-
ognized by any space-bounded four-dimensional deter-
ministic or nondeterministic Turing machines. By the
way, what is the situation for a two or three marker
automata, or for alternation (see [1])? This question
seems very intersting. We will investigate the problem
in further papers.
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