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Abstract:

A mathematical study is carried out for Genetic Algorithm (GA) on OneMax function within the framework of

diffusion model. By using a partial differential equation, we obtain a distribution of the first order schema frequency. We consider
the probability that a population includes the optimum solution by applying Markov chain model. We call this probability as the
success probability of GA. Effects of mutation on the success probability were studied analytically and experimentally.
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1 INTRODUCTION

Genetic algorithms are stochastic optimization techniques
that simulate the biological evolution. We have studied the
effects of stochastic fluctuation in the process of GA evolu-
tion. In the analysis, we applied the Wright-Fisher model
and the diffusion model. In the diffusion model, we derived
an analytical expression of the distribution of the first order
schema frequency.

In the previous work, we showed that GA on the OneMax
problem is equivalent to the asymmetric mutation, and pro-
posed the method to predict the convergence time of OneMax
GA [1, 2]. This paper treats the method for calculating the
probability that a population includes the optimum solution,
which we call the success probability.

In general, mutation plays an important role in computa-
tion of GAs. This paper reports the comparison of numerical
experiments and the theoretical calculations. We found that
mutation is a very important factor determining the work of
stochastic fluctuation.

2 MATHEMATICAL MODEL

We treat the evolution process of a population with /V in-
dividuals. The individuals are represented by binary strings
of length ¢, and there are n = 2¢ genotypes,

i =<i(f),---,i(1) >, (k)€ {0,1}.

We use the relative frequency x;(t) for describing the evolu-
tion

zi(t) = Ni(t)/N,
where N;(t) is the number of individuals of genotype 7 at
generation ¢.
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The process of fitness proportionate selection is
zi(t +1) = fizs(t)/ (1), (D

where f(t) is the average fitness of the population at genera-
tion ¢

n—1
F(t) = > i), @)

=0

The OneMax fitness function f; is defined as
¢

fi=Y_ i(k) 3)

k=1
Thus the string of all ones < 1,1,...,1 > is the optimum

solution of this function.

2.1 Linkage Equilibrium

We derive here the evolution equation for the first order
schema frequency. To do this, we introduce the notion of
linkage equilibrium. Linkage means the correlation between
the different loci in a chromosome, and if there is some
correlation we call this state as linkage disequilibrium [3].
Crossover and mutation have the effect of making the popu-
lation in linkage equilibrium.

The distribution of a population in linkage equilibrium is
given by

¢
zi(t) = ] hiw (), )
k=1
where h;(1 (t) is a frequency of the first order schema at po-
sition k, and ¢ =< i(¢),...,4(1) >. We also use the notation
of hgk) and hgk) for the first order schema frequencies of bit
0 and bit 1, respectively.
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2.2 Evolution Equation of the First Order Schema

In the deterministic schema theory, the evolution of the
first order schema in linkage equilibrium is given by [4, 5].
The relative frequency of the first order schema at position &
is determined by

h(t+1) = ahi® (1) + b, 5)
where constants ¢ and b are
1 1
a=(1-7)1-2p), b=01-2pu)+p
The solution is given in terms of a,
7
bp =1— ——F——F——,
" 2u+ A —2m)/t
and the initial value h; (0)
hl (t) = (Lt {hl (0) - bo} + bo. (6)

Since a < 1, this solution converges to

t — 00 hl(t)—)bo

3 MARKOV MODEL

3.1 Wright-Fisher Model

The stochastic model like Markov model explicitly treats
the number of schemata. We consider the frequencies of two
alleles at some locus. Two alleles are denoted by A and a,
and the number of individuals having allele A and a are Ny
and N;, respectively. Since N = Ny + N; is constant, we
consider N; in this analysis.

The probability Q(j|i) that Ny = 4 at generation ¢ be-
comes N; = j at generation ¢ + 1 is given by the binomial
distribution.

The probability g;(t) of N; = i at generation ¢ obeys the
evolution equation

gj(t+1) = Z Qi) qi(t).

2

(7

N
=0

This equation is represented by using (N + 1)-dimensional
vector q(t)

. 7qN(t))T7

qt) = (q0(?), --

where 7 is transversion, and the matrix ) = [Q(j]7)]

q(t+1) = Qqt),. ®)

This model is called as the Wright-Fisher model[3]0
Next, we derive the transition matrix on the OneMax fit-
ness. Replacing
hi(t) = i/N
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in the evolution equation of the first order schema (5), we
have the transition matrix

ail) = () u? 1-uwp,
uly) = ay-l-b:a%+b,
wherey = i/N.

3.2 Diffusion Model
In genetics, the approximation of Markov model by the
diffusion equation is used frequently [3, 6], and we have de-
rived the diffusion approximation for OneMax problem [4].
Using two functions of y

M(y) = (a=1Dy+0d, V(y) = u(y){l—uly)}/N,

the diffusion approximation of Markov process in OneMax
problem is given by

O¢(y,t) _ 1 0%
ot 20y2

VW6l 0) - 5 (MWl 0).

(10)
The function ¢(y, t) stands for the probability density func-
tion of the relative frequency y at time .

We derive the solution of Kolmogorov forward equation
(10). Approaching t — oo, ¢(y,t) converges to the sta-
tionary solution ¢(y). At this, 9¢(y,t)/0t = 0, and ¥ (y)
satisfies

%{V(Wﬁ(y)} -2 %{M(y)i/}(y)} — 0.

The solution is

bly) = % exp{2/y%dw},

where C' is the normalization constant.

(11

1
| vy =1
0
By integrating this equation, we have

P(y) = C (ay +b)** " (1 — ay — b)>=~" (12)

where C' is a normalization constant, and ¢; and ¢y are

c1 = Nbja®, ¢y =N(1—a—b)/d’.
3.3 Success Probability

In condition of mutation existing, the GA becomes an er-
godic Markov chain, and it drifts among all of placement
states of population. Therefore, if there is enough time, it can
get the transition state which contain optimum solution. We
discuss the convergence between stationary distribution and
stationary state by ergodic Markov chain. In other words, we
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repeat the same calculation with different random numbers
and examine distribution state of convergence.

Now we consider some partial bit string from [ bitto £ — 1
bite. The string in which all bits are 1, < 1,1,...,1,1 >,
has ¢ — 1 bit partial optimum solution.

In population, partial string of length is X, the probability
of having j units of optimum solution is expressed by

S = Pr{x, = j}. (13)
We have defined success probability and failure probability
before, it can be calculated

N

s=3 8" F=

j=1

SiH. (14)

For obtain S and F, it is necessary to solve S J(-l).

S J(-() can be calculated by regression, the initial condition
is
(0<j<N).

st = i, (15)

j
when the number of £ — 1 bit partial optimum solution is i,
in the string length X}, the probability of having j units of
optimum solution is

Q) = PrX, =j|X;1 =i (16)

Transition probability QS? use the distribution of first or-
der schemata in the /th bit,

1 ifj >
4
Q) =0, (17)
2. if5 <4
N—i+j -1 /. .
N i\ (N —i
=5 () G)Go)m oy

The probability S](-Z)of having j units of /- bit partial opti-
mum solution can be calculated by this equation

N
4 —1 4
S0 = 3500 gl

i=0

4 NUMERICAL EXPERIMENT

In this section, we compare results of the theoretical pre-
diction with GA experiments. We use the fitness proportion-
ate selection and uniform crossover. The length of string is
L = 20, and population size N = 100. We performed 10000
runs for each parameter set, and averaged over them. The
success probability S of the GA is calculated by summing
the number of run, where the optimum solution appears in
the population, and deviding it by 10000.

19)
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Fig. 1. Generation dependence of the success probability S
with L = 20, N = 100 and p,,, = 0.01. The thin line is the
result of the GA calculation. The thick line is the theoretical
prediction.
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Fig. 2. Dependence of the success probability S on the mu-
tation rate p,,. Calculation with N = 100 and L = 20. The
solid line shows the theoretical prediction, and black circles
are GA calculations.
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Figure 1 shows the time dependence of the success prob-
ability S. The thin line is the result of GA calculation. The
thick line is the theoretical prediction, which slightly overes-
timates the numerical calculation.

Figure 2 is the mutation rate p,, dependence of the suc-
cess probability S. We observe that the theoretical prediction
can reproduce the p,, dependence quite well. It should be
noted that the success probability decreases sharply as p,,
increases.

5 SUMMARY

In this paper, we demonstrate that the stochastic meth-
ods, Wright-Fisher model and its diffusion approximation,
can reproduce the success probability S of GA on the One-
Max function. Our next aim is to predict the first-appearing
time 7' of the optimum solution in a population by applying
the sotochastic methods used in this study.
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