Homogeneous Systolic Pyramid Automata with n-Dimensional Layers

Makoto SAKAMOTO¹, Takao ITO², Tatsuma KUROGI¹, Makoto NAGATOMO¹, Yasuo UCHIDA², Tsunehiro YOSHINAGA³, Satoshi IKEDA¹, Masahiro YOKOMICHI¹, and Hiroshi FURUTANI¹

¹ Dept. of Computer Science and Systems Engineering, University of Miyazaki, Miyazaki 889-2192, JAPAN

² Dept. of Business Administration, Ube National College of Technology, Ube 755-8555, JAPAN

³ Dept. of Computer Science & Electronic Engineering, Tokuyama College of Technology, Shuman 745-8585, JAPAN

Abstract

Cellular automata were investigated not only in the viewpoint of formal language theory, but also in the viewpoint of pattern recognition. Cellular automata can be classified into some types. A systolic pyramid automata is also one parallel model of various cellular automata. A homogeneous systolic pyramid automaton with n-dimensional layers (n-HSPA) is a pyramid stack of n-dimensional arrays of cells in which the bottom *n*-dimensional layer (level 0) has size a^n $(a\geq 1)$, the next lowest $(a-1)^n$, and so forth, the $(a-1)^n$ 1)st n-dimensional layer (level (a-1)) consisting of a single cell, called the root. Each cell means an identical finite-state machine. The input is accepted if and only if the root cell ever enters an accepting state. An n-HSPA is said to be a real-time n-HSPA if for every *n*-dimensional tape of size an $(a \ge 1)$ it accepts the *n*-dimensional tape in time a-1. Moreover, a 1way *n*-dimensional cellular automaton (1-nCA) can be considered as a natural extension of the 1-way twodimensional cellular automaton to n-dimension. The initial configuration is accepted if the last special cell reaches a final state. A 1-nCA is said to be a realtime 1 - nCA if when started with *n*-dimensional array of cells in nonquiescent state, the special cell reaches a final state. In this paper, we propose a homogeneous systolic automaton with n-dimensional layers (n-HSPA), and investigate some properties of realtime n-HSPA. Specifically, we first investigate a relationship between the accepting powers of real-time n-HSPA's and real-time 1-nCA's. We next show the recognizability of n-dimensional connected tapes by real-time n-HSPA's.

Key Words: cellular automaton, diameter, finite automaton, n-dimension, parallelism, pattern recognition, real time.

1 Introduction and Preliminaries

The question of whether processing n-dimensional digital patterns is much more difficult than (n-1) dimensional ones is of great in the theoret-

ical and practical standpoints. Thus, the study of *n*dimensional automata as a computational model of *n*dimensional pattern processing has been meaningful[4-23]. Cellular automata were investigated not only in the viewpoint of formal language theory, but also in the viewpoint of pattern recognition. Cellular automata can be classified into some types [2]. A systolic pyramid automaton is also one parallel model of various cellular automata. In this paper, we propose a homogeneous systolic automaton with *n*-dimensional layers (*n*-*HSPA*), and investigate some properties of real-time *n*-*HSPA*.

Let Σ be a finite set of symbols. An *n*-dimensional tape over Σ is an (n-1)-dimensional array of elements of Σ . The set of all *n*-dimensional tapes over Σ is denoted by $\Sigma^{(n)}$. Given a tape $x \in \Sigma^{(n)}$, for each $j(1 \leq j \leq n)$, we let $l_j(x)$ be the length of x along the *j*th axis. When $1 \leq i_j \leq l_j(x)$ for each $j(1 \leq j \leq n)$, let $x(i_1, i_2, \ldots, i_n)$ denote the symbol in x with coordinates (i_1, i_2, \ldots, i_n) . We concentrate on the input tape x with $l_1(x) = l_2(x) = l_3(x) = \cdots = l_n(x)$.

A homogeneous systolic pyramid automaton with n-dimensional layers (n-HSPA) is a pyramidal stack of n-dimensional arrays of cells in which the bottom *n*-dimensional layer (level 0) has size a^n ($a \ge 1$), the next lowest $(a-1)^n$, and so forth, the (a-1)st ndimensional layer (level (a - 1)) consisting of a single cell, called the *root*. Each cell means an identical finite-state machine, $M = (Q, \Sigma, \delta, \#, F)$, where Q is a finite set of states, $\Sigma \subseteq Q$ is a finite set of *input* states, $\# \in Q - \Sigma$ is the quiescent state, $F \subseteq Q$ is the set of accepting states, and $\delta: Q^{2^n+1} \to Q$ is the state transition function, mapping the current states of M and its 2^n son cells in a $2 \times 2 \times \cdots \times 2$ block on the n-dimensional layer below into M's next state. The input is *accepted* if and only if the root cell ever enters an accepting state. An n-HSPA is said to be a real-time n-HSPA if for every n-dimensional tape of size a^n $(a \ge 1)$ it accepts the *n*-dimensional tape in time a-1. By $\pounds^R[n\text{-}HSPA]$ we denote the class of the sets of all the n-dimensional tapes accepted by a real-time n-HSPA[1].

A 1-way n-dimensional cellular automaton (1-nCA) can be considered as a natural extension of the

1-way two-dimensional cellular automaton to n dimensions [3]. The initial configuration of the cellular automaton is taken to be an $l_1(x) \times l_2(x) \times \cdots \times l_n(x)$ array of cells in the nonquiescent state. The initial configuration is *accepted* if the last special cell reaches a final state. A 1-nCA is said to be a *real-time* 1-nCA if when started with an $l_1(x) \times l_2(x) \times \cdots \times l_n(x)$ array of cells in the nonquiescent state, the special cell reaches a final state in time $l_1(x)+l_2(x)+\cdots+l_n(x)-1$. By $\pounds^R[1-nCA]$ we denote the class of the sets of all the n-dimensional tapes accepted by a real-time 1-nCA [3].

2 Main Results

We mainly investigate a relationship between the accepting powers of real-time n-HSPA's and real-time 1-nCA's. The following theorem implies that real-time n-HSPA's are less powerful than real-time 1-nCA's.

Theorem 2.1. $\pounds^R[n\text{-}HSPA] \subsetneq \pounds^R[1\text{-}nCA].$

Proof: Let $V = \{x \in \{0,1\}^{(n)} | l_1(x) = l_2(x) = \cdots = l_n(x) \& [\forall_{i_1}, \forall_{i_2}, \dots, \forall_{i_{n-1}} \ (1 \le i_1 \le l_1(x), 1 \le i_2 \le l_2(x), \dots, 1 \le i_{n-1} \le l_{n-1}(x)) [x(i_1, i_2, \dots, i_{n-1}, 1) = x(i_1, i_2, \dots, i_{n-1}, l_n(x))]] \}.$

It is easily shown that $V_1 \in \pounds^R[1 - nCA]$. Below, we show that $V \notin \pounds^R[n - HSPA]$. Suppose that there exists a real-time n - HSPA(n = 3) accepting V. For each $t \ge 4$, let

 $W(n) = \{x \in \{0,1\}^{(3)} | l_1(x) = l_2(x) = \dots = l_n(x) \\ \& [x (1,2,1), (t,t-1,t)] \in 0^{(3)} \}.$

Eight sons of the root cell $A_{(t-1,1,1,1)}$ of $M \ A_{(t-2,1,1,2)}, \ A_{(t-2,1,2,2)}, \ A_{(t-2,2,1,2)}, \ A_{(t-2,2,2,2)}, A_{(t-2,2,1,3)}, A_{(t-2,2,2,3)}$ are denoted by $C_{UNW}, C_{USW}, C_{USE}, C_{UNE}, C_{DNW}, C_{DSW}, C_{DSE}, C_{DNE}$, respectively. For each x in W(n), $x(UNW), \ x(USW), \ x(USE), \ x(UNE), \ x(DNW), x(USW), x(USE), \ x(UNE), \ x(DNW), x(USW), x(USE), \ x(UNE), \ x(DNW), x(USW), \ x(DSW), \ x(DSW), \ x(DSW), \ x(DSW)), \ \gamma \ (x) = (x(UNW), x(USW), \ x(DNW), \ x(DSW)), \ \gamma \ (x) = (x(UNW), \ x(USW), \ x(DNW), \ x(DSW)), \ x(USE), \ x(UNE), \ x(UNE), \ x(DNW), \ x(DSW), \ x(USE), \ x(UNE), \ x(UNE), \ x(DNW), \ x(DSW)), \ x(USE), \ x(UNE), \ x(DNW), \ x(DSW), \ x(USE), \ x(UNE), \ x(DNW), \ x(DSW), \ x(USE), \ x(UNE), \ x(DNW), \ x(DSW), \ x(USE), \ x(UNE), \ x(DNE), \ x(DSE), \ x(DNE)).$ Then, the following two propositions must hold:

Proposition 2.1. (i) For any two tapes $x, y \in W(n)$ whose 1st(1-3) planes are same, $\sigma(x) = \sigma(y)$. (ii) For any two tapes $x, y \in W(n)$ whose n - th(1-3)planes are same, $\gamma(x) = \gamma(y)$.

[Proof : From the mechanism of each cell, it is easily seen that the states of C_{UNW} , C_{USW} , C_{DNW} , C_{DSW} are not influenced by the information of $x(1-3)_t$'s. From this fact, we have (i). The proof of (ii) is the

same as that of (i). Q.E.D.]

Propositon 2.2. For any two tapes $x, y \in W(t)$ whose 1st (1-3) planes are different, $\sigma(x) \neq \sigma(y)$.

[**Proof :** Suppose to the contrary that $\sigma(x) = \sigma(y)$. We consider two tapes $x', y' \in W(t)$ satisfying the follwing :

(i) $x(1-3)_1$ and $x(1-3)_t$, are equal to $x(1-3)_1$ of x, respectively

(ii) $y'(1-3)_1$ is equal to $y(1-3)_1$, and $y'(1-3)_t$ is equal to $x(1-3)_1$.

As is easily seen, $x' \in V$ and so x' is accepted by M. On the other hand, from Proposition 2.1(ii), $\gamma(x') = \gamma(y')$. From Proposition 2.1(i), $\sigma(x) = \sigma(x')$, $\sigma(y) = \sigma(y')$. It follows that y' must be also accepted by M. This contradicts the fact that y' is not in V. Q.E.D]

Proof of Theorem 2.1 (continued) : Let p(t) be the number of tapes in W(t) whose 1st (1-3) planes are different, and let $Q(t) = \{\sigma(x) | x \in W(t)\}$, where k is the number of states of each cell of M. Then, $p(t) = 2^{t^2}$, and $Q(t) \leq k^4$. It follows that p(n) > Q(t)for large t. Therefore, it follows that for large t, there must be two tapes x, y in W(t) such that their 1st (1-3) planes are different and $\sigma(x) = \sigma(y)$. This contradicts Proposition 2.2, so we can conclude that $V \notin \mathcal{L}^R[3-HSPA]$. In the case of n-dimention, we can show that $V \notin \mathcal{L}^R[n$ -HSPA] by using the same technique. This completes the proof of Theorem 2.1. Q.E.D.

We next show the recognizability of *n*-dimensional connected tapes by real-time *n*-*HSPA*'s by using the name technique of Ref.[3]. Let x in $\{0,1\}^{(n)}$. A maximal subset P of N^n satisfying the following conditons is called a 1-component of x.

(i) For any $(i_1,i_2,\ldots,i_n \in P)$, we have $1 \le i_1 \le l_1(x)$, $1 \le i_2 \le l_2(x), \ldots, 1 \le i_n \le l_n(x)$, and $x(i_1,i_2,\ldots,i_n) = 1$. (ii) For any (i_1,i_2,\ldots,i_n) , $(i'_1,i'_2,\ldots,i'_n) \in P$, there exists a sequence $(i_{1,0},i_{2,0},\ldots,i_{n,0}), (i_{1,1},i_{2,1},\ldots,i_{n,1}),\ldots, (i_{1,n},i_{2,n},\ldots,i_{n,n})$ of elements in P such that $(i_{1,0},i_{2,0},\ldots,i_{n,0}) = (i_1,i_2,\ldots,i_n), (i_{1,n},i_{2,n},\ldots,i_{n,n}) = (i'_1,i'_2,\ldots,i'_n), \text{ and } |i_{1,j}-i_{1,j-1}| + |i_{2,j}-i_{2,j-1}| + \ldots + |i_{n,j}-i_{n,j-1}| \le 1(1 \le j \le n)$. A tape $x \in \{0,1\}^{(n)}$ is called *connected* if there exists exactly one 1-component of x.

Let T_c be the set of all the *n*-dimensional connected tapes. Then, we have

Theorem 2.2. $T_c \notin \pounds^R[n\text{-}HSPA]$.

3 Conclusion

We investigated a relationship between the accepting powers of homogeneous systolic pyramid automaton with n-dimensional layers(n-HSPA) and one-way *n*-dimensional cellular automata (1-nCA) in real time, and showed that real-time n-*HSPA*'s are less powerful than real time 1-nCA's.

References

- K.Culik II, J.Gruska and A Salomaa, Systolic trellis automata, Part I, *International Journal* of Computer Mathematics, 15:145-212,1984.
- [2] K.Inoue and I.Takanami, A survey of twodimensional automata theory, *Information Sciences*, 55:pp.99-121, 1991.
- [3] C. Iwamoto, K. Inoue, and I. Takanami, Some Properties of Homogeneous Pyramid Automata, *The IEICE Transactions on Information and Systems (Japanese Edition)*, J73-D-I(9): 778-780, 1990.
- [4] K. Krithivasan and M. Mahajan, Systolic pyramid automata, cellular automata and array languages, International Journal of Pattern Recognition and Artificial Intelligence, 3(3 4):405-433, 1989.
- [5] M.Sakamoto, Three-Dimensional Alternating Turing Machines, Ph.D. Thesis, Yamaguchi University, 1999.
- [6] M.Sakamoto, H.Okabe, and K.Inoue, Some properties of four-dimansional finite automata, in 2002 Chugoku – Section Joint Convention Record of Insistes of Electrical and Information Engineerings, Japan, p.351,2002.
- [7] M.Sakamoto, S.Nagami, K.Kono, A relationship between the accepting powers of threedimentional layers, *Trans. of SCI(Japan)*, Vol.17, No.10, pp.451-458,2004.
- [8] M.Sakamoto, H.Okabe, S.Nagami, S.Taniguchi, T.Maki, Y.Nakama, M.Saito, M.Kono, and K.Inoue, A note on four-dimensional finite automata, WSEAS Transactions on Computers, Issue 5,Vol.3, pp.1651-1656,2004.
- [9] M.Sakamoto, T.Ito, N.Tomozoe, and H.Furutani, Asurvey of three-dimensional automata, *The* papers of Technical Meeting on Information Systems, IEE, Japan, IS-07-12, pp.11-17,2007.
- [10] M.Sakamoto, T.Ito, H.Furutani, and M.Kono, Some accepting powers of three-dimensional parallel Turning machines, in 1st European Workshop on Artificial Life and Robotics, Vienna, Austria, pp.73-79,2007.

- [11] M.Sakamoto, N.Tomozoe, H.Furutani, M.Kono, T.Ito, Y.Uchida, and H.Okabe, A survey of automata on three-dimensional input tapes, WSEAST Transactions on Computers, Issue 10, Vol.7, pp.1638-1647, 2008.
- [12] M.Sakamoto, T.Ito, H.Furutani, and M.Kono, Some accepting powers of three-dimensional parallel Turning machines, *International Journal* of Artificial Life and Robotics, Vol.13, No.1, pp.27-30,2008.
- [13] M.Sakamoto, M.Fukuda, S.Okatani, T.Ito, H.Furutani, and M.Kono, Path-bouded Threedimensional finite automata, *International Journal of Artificial life and Robotica*, *Springer*, Vol.13, No.1, pp.54-57, 2008.
- [14] M.Sakamoto, S.Okatani, M.Fukuda, T.Ito, and H.Furutani, and M.Kono, A relationship between Turning machines and finite automata on fourdimensional input tapes, *International Journal* of Artificial life and Robotica, Springer, Vol.13,No.1, pp.58-60,2008.
- [15] M.Sakamoto, S.Okatani, K.Kajisa, M.Fukuda, T.Matsuawa, A.Taniue, T.Ito, H.Furutani, and M.Kono, Hierarchies based on the number of cooperating systems of three-dimensional finite automata,International Journal of Artificial Life and Robotics,Vo.4,No.3, pp.425-428.2009.
- [16] M.Sakamoto, T.Matsukawa, R.Katamune, H.Furutani, M.Kono, S.Ikeda, T.Ito, Y.Uchida, and T.Yoshinaga, Four-dimensional synchronized alternating Turning machines, *Proceedings of the 10th American Conference on Applied Mathmatics, Harvard University, Cambridge, USA*, pp.195-200,2010(CD-ROM).
- [17] M.Sakamoto, R.Katamune, T.Matsukawa, H.Furutani, M.Kono, S.Ikeda, T.Ito, Y.Uchida, and T.Yoshinaga, Some result about hierarchy and recognizability of four-dimensional sychronized alternating Turning machines, *Proceedings* of the 10th American Conference on Applied Mathmatics, Harvard University, Cambridge, USA, pp.201-205, 2010(CD-ROM).
- [18] M.Sakamoto, T.Matsukawa, R.Katamune, H.Furutani, M.Kono, S.Ikeda, T.Ito, Y.Uchida, and T.Yoshinaga, Synchronized Alternating Turning Machines on Four-Dimensional Input Tapes, WSES TRANSACTIONS on COMPUTERS, Issue 4, Vol.9, pp.319-328, 2010.
- [19] M.Sakamoto, R.Katamune, T.Matsukawa, H.Furutani, M.Kono, S.Ikeda, T.Ito, Y.Uchida, and T.Yoshinaga, Hardware Hierarchies and Recognizabilities of Four-Dimensional Synchronized Alternating Turning Machines, WSES

TRANSACTIONS on COMPUTERS, Issue 4. pp.329-338, 2010.

- [20] M.Sakamoto, T.Ito, X.Qingquan, Y.Uchida, T.Yochinaga, M.Yokomichi, S.Ikeda, and H.Furutani, A Note on Three-dimensional Probabilistic Finite Automata, *The Seventeenth International Symposium on Artificial Life* and Robotics 2012, Oita, Japan, pp.492-495,2012(CD-ROM).
- [21] M.Sakamoto, Y.Uchida, T.Hamada, T.Ito, T.Yoshinaga, M.Yokomichi, S.Ikeda, and H.Furutani, A Relationship between the Accepting Powers of Nondeterministic Finite Automata and Probabilistic Finite Automata on Three-Dimensional Input Tapes, in the 2012 IEICE General Conference, Okayama University, p.4,2012(CD-ROM).
- [22] T. Toffoli and N. Margolus, Cellullar automaton machines – new environment for modeling, MIT Press, 1987.
- [23] J. Wiedermann, Parallel Turing machines, Technical Report RUU-CS-84-11, Department of Computer Science, University of Utrecht, the Netherlands, 1984.