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Abstract

Cellular automata were investigated not only in the
viewpoint of formal language theory, but also in the
viewpoint of pattern recognition. Cellular automata
can be classified into some types. A systolic pyramid
automata is also one parallel model of various cellular
automata. A homogeneous systolic pyramid automa-
ton with n-dimensional layers (n-HSPA) is a pyra-
mid stack of n-dimensional arrays of cells in which
the bottom n-dimensional layer (level 0) has size a”
(a>1), the next lowest (¢ — 1)™, and so forth, the (a-
1)st n-dimensional layer (level (a-1)) consisting of a
single cell, called the root. Each cell means an identi-
cal finite-state machine. The input is accepted if and
only if the root cell ever enters an accepting state.
An n-HSPA is said to be a real-time n-HSPA if for
every n-dimensional tape of size an (a>1) it accepts
the n-dimensional tape in time a-1. Moreover, a 1-
way n-dimensional cellular automaton (1-nCA) can
be considered as a natural extension of the 1-way two-
dimensional cellular automaton to n-dimension. The
initial configuration is accepted if the last special cell
reaches a final state. A 1-nC'A is said to be a real-
time 1-nCA if when started with n-dimensional array
of cells in nonquiescent state, the special cell reaches
a final state. In this paper, we propose a homoge-
neous systolic automaton with n-dimensional layers
(n-HSPA), and investigate some properties of real-
time n-HSPA. Specifically, we first investigate a re-
lationship between the accepting powers of real-time
n-HSPA’s and real-time 1-nC' A’s. We next show the
recognizability of n-dimensional connected tapes by
real-time n-HSPA’s.

Key Words : cellular automaton, diameter, finite au-
tomaton, n-dimension, parallelism, pattern recogni-
tion, real time.

1 Introduction and Preliminaries
The question of whether processing n-dimentional

digital patterns is much more difficult than (n-1) di-
mentional ones is of great in terest from the theoret-
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ical and practical standpoints. Thus, the study of n-
dimensional automata as a computational model of n-
dimensional pattern processing has been meaningful[4-
23].  Cellular automata were investigated not only
in the viewpoint of formal language theory, but also
in the viewpoint of pattern recognition. Cellular au-
tomata can be classified into some types [2]. A systolic
pyramid automaton is also one parallel model of var-
ious cellular automata. In this paper, we propose a
homogeneous systolic automaton with n-dimensional
layers (n-HSPA), and investigate some properties of
real-time n- HSPA.

Let X be a finite set of symbols. An n-dimensional
tape over Y. is an (n — 1)-dimensional array of ele-
ments of ¥. The set of all n-dimensional tapes over
¥ is denoted by X("). Given a tape z€X(™, for each
Jj(1 <j < n), welet [;(z) be the length of = along the
jth axis. When 1 <i; < ;(x) for each j(1 < j < n),
let x(i1,12,...,i,) denote the symbol in x with coor-
dinates (i1,42,...,4,). We concentrate on the input
tape & with I1(x) = la(z) = l5(z) = - - = I, ().

A homogeneous systolic pyramid automaton with
n-dimensional layers (n-HSPA) is a pyramidal stack
of n-dimensional arrays of cells in which the bottom
n-dimensional layer (level 0) has size a™ (a > 1), the
next lowest (a — 1)™, and so forth, the (a — 1)st n-
dimensional layer (level (a — 1)) consisting of a sin-
gle cell, called the root. Each cell means an identical
finite-state machine, M = (Q, X, , #, F'), where Q is
a finite set of states, ¥ C @ is a finite set of input
states, # € @ — X is the quiescent state, F C @ is
the set of accepting states, and 6 : Q*" 1 — @ is the
state transition function, mapping the current states
of M and its 2" son cells in a 2 x 2 x --- x 2 block
on the n-dimensional layer below into M’s next state.
The input is accepted if and only if the root cell ever
enters an accepting state. An n-HSPA is said to be
a real-time n- HSPA if for every n-dimensional tape of
size a™ (a > 1) it accepts the n-dimensional tape in
time a — 1. By £E[n-HSPA] we denote the class of
the sets of all the n-dimensional tapes accepted by a
real-time n- HSPA[1].

A l-way n-dimensional cellular automaton (1-
nCA) can be considered as a natural extension of the



1-way two-dimensional cellular automaton to n dimen-
sions [3]. The initial configuration of the cellular au-
tomaton is taken to be an Iy (z) x la(x) X « -+ X I, ()
array of cells in the nonquiescent state. The initial
configuration is accepted if the last special cell reaches
a final state. A 1-nC A is said to be a real-time 1-nC A
if when started with an Iy (x) x la(x) X - -+ x I,,(x) ar-
ray of cells in the nonquiescent state, the special cell
reaches a final state in time Iy (z)+1ls(z)+- - -+, (z)—1.
By £2[1-nC A] we denote the class of the sets of all the
n-dimensional tapes accepted by a real-time 1-nCA

[3].

2 Main Results

We mainly investigate a relationship between the
accepting powers of real-time n-HSPA’s and real-time
1-nCA’s. The following theorem implies that real-time
n-HSPA’s are less powerful than real-time 1-nC A’s.

Theorem 2.1. £Bn-HSPA] C £E[1-nCA].

Proof : Let V={z € {0,1}™|l;(2) = lo(x) = --
ln(x)&[vil,viz,...,vin71 (1 S i1 S l1(.13),1 S i2
lg(x), ey 1 S in—l S ln_l(ﬁC))[l‘(Z’hiQ, N 7in—17 1)
z(i1, 42, - -y in—1,n(2))]]}

It is easily shown that Vi € £B[1-nCA]. Below,
we show that V ¢ £F[n-HSPA]. Suppose that there
exists a real-time n-HSPA(n = 3) accepting V. For
each t > 4, let

Al

Wi(n) = {z € {0,1}®)l1(z) = la(z) = -+ = I, ()
& [z (1,2,1), (t,t —1,t)] € 0@}
Eight sons of the root
M Ag_2112), Au—21.22) Aw—2212) Au—2,2.2.2)
A(t—2,1,1,3)7 (t—2,1,2,3)s “1(t—2,2,1,3) “1(t—2,2,2,3) aI€ de-
noted by Cunw, Cusw, Cuse,Cune, Conw, Cpsw,
Cpsge, CpnE, respectively. For each z in W(n),
2(UNW), x(USW), x(USE), x(UNE), x(DNW),
x(USW), x(USE), x(UNE) are the states of Cynw,
Cusw, Cuse, Cune, Conw, Cpsw, Cpse, CpNE,
at time t-2, respectively. Let o (z) = (z(UNW),
x(USW), x(DNW), x(DSW)), v (z) = (z(USE),
2(UNE), x(DSE), x(DNE)). and p(x) = (x(UNW),
x(USW), x(DNW), x(DSW), z(USE), x(UNE),
2(DSE), x(DNE)). Then, the following two proposi-

tions must hold:

cell Ap_11,1,1) of

Proposition 2.1. (i) For any two tapes x,y € W(n)
whose 1st(1 — 3) planes are same, o (x) = o (y). (ii)
For any two tapes =,y € W(n) whose n —th(1 — 3)
planes are same, v (x) = v (y).

[Proof : From the mechanism of each cell, it is easily
seen that the states of Cuynw, Cusw, Conw, Cpsw
are not influenced by the information of z(1 — 3)’s.
From this fact, we have (i). The proof of (ii) is the
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same as that of (i). Q.E.D.]

Propositon 2.2. For any two tapes z,y € W(t)
whose 1st (1-3) planes are dif ferent, o(x) # o(y).

[Proof : Suppose to the contrary that o(x) = o(y).
We consider two tapes 'y’ € W(t) satisfying the foll-
wing :

(i) (1 —3); and (1 — 3);, are equal to z(1 —3); of x,
respectively
(i) ¥'(1 — 3)1 is equal to y(1 — 3)1, and y'(1 — 3); is
equal to z(1 — 3);.

As is easily seen, ' € V and so 2’ is accepted by M.
On the other hand, from Proposition 2.1(ii), y(z') =
~(y"). From Proposition 2.1(i), o(z) = o(z'), o(y) =
o(y"). Tt follows that y’ must be also accepted by M.
This contradicts the fact that y’ is not in V. Q.E.D)]

Proof of Theorem 2.1 (continued) : Let p(t) be
the number of tapes in W (t) whose 1st (1-3) planes
are different, and let Q(t) = {o(z)|xr € W(t)}, where
k is the number of states of each cell of M. Then,
p(t) =2, and Q(t) < k*. Tt follows that p(n) > Q(t)
for large t. Therefore, it follows that for large ¢, there
must be two tapes x,y in W(¢) such that their 1st (1-3)
planes are different and o(z) = o(y). This contradicts
Proposition 2.2, so we can conclude that V ¢ £E[3-
HSPA]. In the case of n-dimention, we can show that
Ve £E[n-HSPA] by using the same technique. This
completes the proof of Theorem 2.1. Q.E.D.

We next show the recognizability of n-dimensional
connected tapes by real-time n-HSPA’s by using the
name technique of Ref.[3]. Let = in {0,1}("). A maxi-
mal subset P of N satisfying the following conditons
is called a 1-component of x.

(i) For any (i1,ia,...,in, € P, we have 1<i;<lj(x),
1<is<ls(),. . ., 1<i, <lp(z), and (i1, d2,...,4n) = 1.
(ii) For any (i1,ia,...,in), (i],ih,...,i,)EP, there ex-
ists a sequence (71,0,42,0;- - »8n,0)5(41,1,82,15 - sin,1)5- - -
(t1,n,82,ny- - inn) of elements in P such that
(i1,03i2,07~ . ~7in,0) = (ilviQa' . 'ain)v (il,n’iQ,nr . 'ain,n) =
(i/177;/2,. . .,’L.fn)7 and ‘Z.lyj-’é.lyjfﬂ + |Z'2’j—’i2_’j71| + ...+
lin j=inj—1]< 1(1 < j < n). A tape z € {0,1}(®)
is called connected if there exists exactly one 1-
component of z.

Let T, be the set of all the n-dimensional connected
tapes. Then, we have

Theorem 2.2. T, ¢ £ [n-HSPA].

3 Conclusion

We investigated a relationship between the accept-
ing powers of homogeneous systolic pyramid automa-
ton with n-dimensional layers(n-HSPA) and one-way



The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th *13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

n-dimensional cellular automata (1-nC A) in real time,
and showed that real-time n-HSPA’s are less powerful
than real time 1-nCA’s.
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