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Abstract

In theoretical computer science,the Turing machine
was introduced as a simple mathematical model of
computers in 1936, and has played a number of im-
portant roles in understanding and exploiting ba-
sic concepts and mechanisms in computing and in-
formation processing. After that, the development
of the processing of pictorial information by com-
puter was rapid in those days.Therefore, the problem
of computational complexity was also arisen in the
two-dimensional information processing. M.Blum and
C.Hewitt first proposed two-dimensional automata as
a computaional model of two-dimensional pattern pro-
cessing in 1967[1]. Since then, many researchers in this
field have been investigating many properties of two-
or three-dimensional automata. In 1997, C.R.Dyer
and A.Rosenfeld introduced an acceptor on a two-
dimensional pattern (or tape), called the pyramid cel-

lular acceptor, and demonstrated that many useful
recognition tasks are executed by pyramid cellular ac-
ceptors in time proportional to the logarithm of the di-
ameter of the input. They also introduced a bottom-up

pyramid cellular acceptor which is a restricted version
of the pyramid cellular acceptor, and proposed some
interesting open problems about bottom-up pyramid
cellular acceptors. On the other hand, we think that
the study of n-dimensional automata has been mean-
ingful as the computational model of n-dimensional
infomation processing[9]. In this paper,we investi-
gate about bottom-up pyramid cellular accptors with
n-dimensional layers, and show their some accepting
powers.

Key Words : cellular automaton, diameter, finite au-
tomaton, n-dimension, pattern recognition.

1 Introduction

In 1967, M.Blum and C.Hewitt first proposed two-
dimensional automata as a computational model of
two-dimensional pattern processing, and investigated
their pattern recognition abilities [1]. Since then,
many researchers in this field have been investigating
a lot of properties about automata on a two- or three-

dimensional tape. In [2], C.R.Dyer and A.Rosenfeld
introduced an acceptor on a two-dimensional pattern
(or tape), called the pyramid cellular acceptor, and
demonstrated that many useful recognition tasks are
executed by the pyramid cellular acceptors in time
proportional to logarithm of the diameter of the in-
put. They also introduced a bottom-up pyramid cellu-

lar acceptor, which is a restricted version of the pyra-
mid cellular acceptor, and proposed some interesting
open problems about it. On the other hand, the ques-
tion of whether processing n-dimensional digital pat-
terns is much difficult than (n-1)-dimensional ones is of
great interest from the theoretical and practical stand-
points. Thus, the study of n-dimensional automata
as the computasional model of n-dimensional pattern
processing has been meaningful. From this point of
view, we are interested in n-dimensional automata.

In this paper, we study about bottom-up pyramid
cellular acceptors with n-dimensional layers, and deal
with the following problems (which is one of the open
problems) : Does the class of sets accepted by de-
terministic bottom-up pyramid cellular acceptors with
n-dimensional layers include the class of sets accepted
by deterministic n-dimensional finite automata [3-7]?
This paper shows that the class of sets accepted by
n-dimensional finite automata is incomparable with
the class of sets accepted by deterministic bottom-up
pyramid cellular acceptors which operate in time of
order lower than the diameter of the input.

2 Definition

Let Σ be a finite set of symbols. An n-dimensional
tape over Σ is an n-dimensional array of elements of
Σ. The set of all the n-dimensional tapes over Σ is
denoted by Σ(n). Given a tape x ∈ Σ(n), for each j (1
≤ j ≤ n), we let lj(x) be the length of x along the jth
axis. The set of all x ∈ Σ(n) with l1(x) = n1, l2(x) =
n2, . . ., ln(x) = nn is denoted by Σ(n1,n2,...,nn). When
1 ≤ ij ≤ lj(x) for each j (1 ≤ j ≤ n), let x (i1, i2,
. . ., in), denote the symbol in x with coordinates (i1,
i2, . . ., in). Furthermore, we define x [(i1, i2, . . ., in),
(i1’, i2’, . . ., in’)], when i ≤ ij ≤ ij ’ ≤ lj(x) for each
integer j (1 ≤ j ≤ n), as the n-dimensional input tape
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y satisfying the following (i) and (ii) : (i) for each j
(1 ≤ j ≤ n), lj(y) = ij ’ - ij + 1; (ii) for each r1, r2,
. . . ,rn(1 ≤ r1 ≤ l1(y), 1 ≤ r2 ≤ l2(y), . . ., 1 ≤ rn ≤
ln(y)), y (r1, r2, . . ., rn) = x (r1 + i1 - 1, r2 + i2 - 1,
. . ., rn + in - 1).

We next give some basic concepts about bottom-up
pyramid cellular acceptors with n-dimensional layers
[7]. A bottom-up pyramid cellular acceptor with n-
dimensional layers (n-UPCA) is a pyramidal stack
of n-dimensional arrays of cells in which the bottom
n-dimensional layer has size 2t × 2t × · · · × 2t (t ≥
0), the next lowest 2t−1 × 2t−1 × · · · × 2t−1 , and so
forth, the (t + 1)st n-dimensional layer consisting of
a single cell, called the root. Each cell is defined as an
identical finite-state machine, M = (QN , QT , δ, A),
where QN is a nonempty, finite set of states, QT ⊆
QN is a finite set of input states, A ⊆ QN is the set
of accepting states, and δ : Q2n+1

N → QN is the state
transition function, mapping the current states of M
and its 2n son cells in a 2 × 2 × · · · × 2 block on the
n-dimensional layer below into M ’s next state. For
example, the definition in the case of four-dimensional
case as follows. Let c be some cell on the (i + 1)st n-
dimensional layer, and let c (UNWP ), c (UNWF ),
c (USWP ), c (USWF ), c (USEP ), c (USEF ), c
(UNEP ), c (UNEF ), c (DNWP ), c (DNWF ), c
(DSWP ), c (DSWF ), c (DSEP ), c (DSEF ), c
(DNEP ), and c (DNEF ) be sixteen son cells (on the
ith n-dimensional layer) of c, where c(UNWF ) is c’s
upper northwest son in the most future direction, c
(DNWP ) is c’s lower northwest son in the most past
direction, etc. For example, if the coordinates of c on
the (i + 1)st layer is (1, 1, 1, 1) ((2t, 2t, 2t, 2t)), the
coordinates of sixteen son cells of c on the ith layer
c (UNWP ), c (UNWF ) ,c (USWP ), c (USWF ),
c (USEP ), c (USEF ), c (UNEP ), c (UNEF ), c
(DNWP ), c (DNWF ), c (DSWP ), c (DSWF ), c
(DSEP ), c (DSEF ), c (DNEP ), and c (DNEF ) are
(1, 1, 1, 1), (1, 1, 1, 2), (1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2,
1), (1, 2, 2, 2), (1, 1, 2, 1), (1, 1, 2, 2), (2, 1, 1, 1), (2,
1, 1, 2), (2, 2, 1, 1), (2, 2, 1, 2), (2, 2, 2, 1), (2, 2, 2, 2),
(2, 1, 2, 1), (2, 1, 2, 2), ((2t − 1, 2t − 1, 2t − 1, 2t −
1), (2t − 1, 2t − 1, 2t − 1, 2t), (2t − 1, 2t, 2t − 1, 2t

− 1), (2t − 1, 2t, 2t − 1, 2t), (2t − 1, 2t, 2t, 2t − 1),
(2t − 1, 2t, 2t, 2t), (2t − 1, 2t − 1, 2t, 2t − 1), (2t − 1,
2t − 1, 2t, 2t), (2t, 2t − 1, 2t − 1, 2t − 1), (2t, 2t − 1,
2t − 1, 2t), (2t, 2t, 2t − 1, 2t − 1), (2t, 2t, 2t − 1, 2t),
(2t, 2t, 2t, 2t − 1), (2t, 2t, 2t, 2t), (2t, 2t − 1, 2t, 2t

− 1), (2t, 2t − 1, 2t, 2t)),respectively. Then qc (t+1)
= δ (qc(t), qc(UNWP ) (t), qc(UNWF ) (t), qc(USWP ) (t),
qc(USWF ) (t), qc(USEP ) (t), qc(USEF ) (t), qc(UNEP ) (t),
qc(UNEF ) (t), qc(DNWP ) (t), qc(DNWF ) (t), qc(DSWP )

(t), qc(DSWF ) (t), qc(DSEP ) (t), qc(DSEF ) (t), qc(DNEP )

(t)), qc(DNEF ) (t)), where for example qc(t) means the
state of c at time t. At time t = 0, the input tape x ∈

Q
(4)
T [l1(x) = l2(x) = l3(x) = l4(x) = 2t, t ≥ 0] is stored

as the initial states of the bottom n-dimensional layer,

henceforth called the base, in such a way that x (i1, i2,
i3, i4) is stored at the cell of the i1th row and the i2th
column on the i3th plane of the i4th n-dimensional
rectangular array, and the other cells are initialized to
a quiescent state qs (∈QN−QT−A). As usual, we let
δ (qs, qs, qs, qs, qs, qs, qs, qs, qs, qs, qs, qs, qs, qs, qs, qs,
qs) = qs. The input is accepted if and only if the root
cell ever enters an accepting state. This 4-UPCA is
called deterministic. A nondeterministic bottom-up
pyramid cellular acceptor is defined as a 4-UPCA us-
ing δ : Q17

N → 2QN instead of the state transition func-
tion of the deterministic 4-UPCA. Below, we denote
a deterministic n-UPCA by n-DUPCA, and a nonde-
terministic n-UPCA by n-NUPCA. An n-DUPCA
(or n-NUPCA) operates in time T (n) if for every n-
dimensional tape of size 2t × 2t × 2t × 2t (t ≥ 0) it ac-
cepts the n-dimensional tape, then there is an accept-
ing computation which uses no more than time T (t).
By n-DUPCA (T (t)) [n-NUPCA(T (t))] we denote
a T (t) time-bounded n-DUPCA [n-NUPCA] which
operates in time T (t).

We next introduce an n-dimensional finite au-
tomaton [8]. An n-dimensional finite automaton
(n-FA) is an n-dimensional Turing machine with
no workspace. An n-FA M has a read-only n-
dimensional tape with boundary symbols #’s, finite
control, and an input head. For example, we explain
the definition in the case of four-dimensional case as
follows. The input head can move in eight direction −
east, west, south, north, up, down, future, or past −
unless it falls off the input tape. Formally,M is defined
by the 5-tuple M = (K, Σ ∪ {#}, δ, q0, F ), where
K is a finite set of states, Σ is a finite set of input
symbols, # is the boundary symbol (not in Σ), δ : K
× (Σ ∪ {#}) → 2K×{E,W,S,N,U,D,F,P,H} is the state
transition function, where E, W , S, N , U , D, F , P ,
and H represent the move directions of the input head
− east, west, south, north, up, down, future, past, and
no move, respectively, q0 ∈ K is the intial state, and
F ⊆ K is the set of accepting states. The action of
M is similar to that of the one-dimensional (or two-
dimensional) finite automaton [4], except that the in-
put head of M can move in eight directions. That is,
when an input tape x ∈ Σ(4) with boundary symbols is
presented toM , M starts in its initial state q0 with the
input head on x (1, 1, 1, 1), and determines the next
state of the finite control and the move direction of the
input head, depending on the present state of the finite
control and the symbol read by the input head. We
say that M accepts the tape x if it eventually enters
an accepting state. We denote a deterministic n-FA
[nondeterministic n-FA] by n-DFA [n-NFA].

We let each sidelength of each input tape of n-
dimensional automata, throughout this paper, be
equivalent. We denote the set of all n-dimensional
tapes accepted by M by T (M). Define £ [n-DUPCA]
= {T | T (M) is accepted by some n-DUPCA M}.

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13), 
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 297



£[n-NUPCA], £[n-DFA], etc. are defined similarly.

Finally, we give definition of diameter. For ex-
ample, we explain the definition in the case of four-
dimension. Given a subset S of a tape x ∈ Σ(4), we
can define its extent in a given direction θ as the length
of its projection on a plane in that direction. Here the
length of a projection is the distance between its far-
thest apart nonzero values. Thus the extent of S is
the distance between a pair of parallel planes perpen-
dicular to θ that just bracket S. The diameter of S is
defined as its extent in any direction.

3 Results

In this section, we show that the class of sets ac-
cepted by n-DFA’s is imcomparable with the class of
sets accepted by n-DUPCA’s which operate in time
of order lower than the diameter of the input. It has
often been noticed that we can easily get several prop-
erties of n-dimensional automata by directly applying
the results of (n-1)-dimensional case, if each sidelength
of each n-dimensional input tape of these automata is
not equivalent. So we let each sidelength of each input
tape, throughout this paper, be equivalent in order to
increase the theoretical interest.

Lemma 3.1. Let T1 = { x ∈ { 0,1 }(n) | ∃ t ( t ≥ 1)
[ℓ1(x) = ℓ2(x) = · · · = ℓn(x) = 2t] and x (2t−1, 2t−1,
. . ., 2t−1) = 1 }. Then,
(1) T1(x) /∈ £[n-DFA], and
(2) T1(x) ∈ £[n-DUPCA(t)].

Proof : The Proof of (1) is similar to that of The-
orem 3 in [7]. On the other hand, by using the same
technique as in the proof of Lemma 1 in [6], we can get
Part (2) of the lemma. �

Lemma 3.2. Let T2 = {x ∈ {0, 1}(n) | ∃t (t ≥ 1)
[ℓ1(x) = ℓ2(x) = · · · = ℓn(x) = 2t] and x [(1, 1, . . . , 1),
(2t, 2t, . . . , 1)] = x [(1, 1, . . . , 2t), (2t, 2t, . . . , 2t)] }. Let

T (t) be a time function such that limt→∞ [T (t)/22
t

] =
0. Then,
(1) T2 ∈ £ [n-DFA],and
(2) T2 /∈ £ [n-DUPCA(T (t))].

Proof : It is obvious that there is an n-DFA accept-
ing T2, and so (1) of the lemma holds. Below, we prove
(2). Suppose that there is an n-DUPCA B which ac-
cepts T2 and operates in time T (t), and that each cell
of B has k states. For each t ≥ 2, let

W (t) = {x ∈ {0, 1}(n)|ℓ1(x) = ℓ2(x) = · · · =

ℓn(x) = 2t}, and

W ′(n) = {x ∈ {0, 1}(n)|ℓ1(x) = ℓ2(x) = · · · = ℓn(x)

= 2t−1

& x[(1, 1, . . . , 1), (2t−1, 2t−1, . . . , 1)] ∈ {0, 1}(n)

& x[(1, 1, . . . , 2), (2t−1, 2t−1, . . . , 2t−1)] ∈ {0}(n)}.

We consider the cases when the tapes in W (t) are
presented to B. Let c be the cell which is situated at
the first row, the first column, the first plane, . . . ,
and the first (n-1)-dimensional array in the tth layer
(i.e., the layer just below the root cell). (Note that
there are 2n−1 cells in the tth layer.) For each x in
W (t) such that x[(1, 1, . . . , 1), (2t−1, 2t−1, . . . , 2t−1)] ∈
W ′(t), and for each r ≥ 1, let qr(x) be the state of c
at time r when x is presented to B. Then the following
proposition must hold.

Proposition 3.1. Let x, y be two different tapes in

W (t) such that both

x[(1, 1, . . . , 1), (2t−1, 2t−1, . . . , 2t−1)]and
y[(1, 1, . . . , 1), (2t−1, 2t−1, . . . , 2t−1)]are in W ′(t) and
x[(1, 1, . . . , 1), (2t−1, 2t−1, . . . , 2t−1)]

6= y[(1, 1, . . . , 1), (2t−1, 2t−1, . . . , 2t−1)].
Then, (q1(x), q2(x), . . . , qT (t)(x))

= (q1(y), q2(y), . . . , qT (t)(y)).

[Proof : For suppose that (q1(x), q2(x), . . . , qT (t)(x))
= (q1(y), q2(y), . . . , qT (t)(y)). We consider two tapes z,
z′ in W (t) such that

(i) z [(1,1,. . . ,1), (2t−1, 2t−1, . . . , 2t−1)]
= x [(1,1,. . . ,1), (2t−1, 2t−1, . . . , 2t−1)]

and
z′ [(1,1,. . . ,1), (2t−1, 2t−1, . . . , 2t−1)]

= y [(1,1,. . . ,1), (2t−1, 2t−1, . . . , 2t−1)],

(ii) the part of z except for z [(1, 1, . . . , 1), (2t−1, 2t−1,
. . ., 2t−1)] is identical with the part z′ except for
z′[(1, 1, . . . , 1), (2t−1, 2t−1, . . . , 2t−1)],

and

(iii) z[(1, 1, . . . , 1), (2t, 2t, . . . , 1)]
= z[(1, 1, . . . , 2t), (2t, 2t, . . . , 2t)].

By assumption, the root cell of B enters the same
states until time T (t), for the tapes z and z′. Since B

operate in time T (t) and z is in T2, it follows that z
′ is

also accepted by B. This contradicts the fact that z′ is
not in T2. �]

Let s(t) be the number of different sequences of
states which c enters until time T (t). Clearly, s(t) ≤
kT (t). On the other hand (for any set S, let |S| de-

note the number of elements of S.), |W ′(t)| = 22
(t−1)

2

.

Since limn→∞ T (t)/22
t

= 0 (by assumption of the
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lemma), it follows that |W ′(t)| > s(t) for lange t.
Therefore, it follows that for large t there must exist
two different tapes x, y in W (t) such that

(i) both x[(1, 1, . . . , 1), (2t−1, 2t−1, . . . , 2t−1)]
and y[(1, 1, . . . , 1), (2t−1, 2t−1, . . . , 2t−1)]
and in W ′(t),

(ii) x[(1, 1, . . . , 1), (2t−1, 2t−1, . . . , 2t−1)]
6= y[(1, 1, . . . , 1), (2t−1, 2t−1, . . . , 2t−1)], and

(iii) (q1(x), q2(x), . . . , qT (t)(x))
= (q1(y), q2(y), . . . , qT (t)(y)).

This contradicts the above Proposition 3.1, and
thus the Part (2) of the lemma holds. �

From Lemmas 3.1 and 3.2, we can get the following
theorem.

Theorem 3.1. Let T (t) be a time function such that

limn→∞ [T (t)/22
t

] = 0 and T (t) ≥ t(t ≥ 1). Then £

[n-DFA] is imcomparable with £ [n-DUPCA(T (t))].

Corollary 3.1. £[n-DFA] is incomparable with £ [n-
DUPCA(t)], which is the class of sets accepted by n-
DUPCA’s operating in real time.

Corollary 3.2. £ [n-DFA] is incomparable with £[n-
NUPCA(t)].

4 Conclusion

In this paper, we dealt with the accepting pow-
ers of bottom-up pyramid cellular acceptors with n-
dimensional layers, and showed that the class of sets
accepted by n-DFA’s is incomparable with the class
of sets accepted by n-DUPCA’s which operate in time
of order lower than the diameter of the input. It is
still inknown whether the class of sets accepted by
n-DUPCA’s includes the class of sets accepted by n-
DFA’s.
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