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Abstract: In this paper, we proposed RBFNs with SVR to identify a distribution under censored data. Radial basis function 

networks (RBFNs) with one hidden layer and rapid convergence speed used to identify system generally. Support vector 

regression (SVR) with optimal quadratic programming to determine the number of hidden nodes and the initial parameters of 

kernel and the initial weights of RBFNs. By annealing robust learning algorithm to tune the parameters of kernel and the 

weights and to overcome the error measurement due to data censored. The simulation result of bivariate normal distribution 

identification under censored data shows the feasibility of proposed method. 
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1. INTRODUCTION 
 

Interval censored data analysis is important in 

survival analysis and biomedical statistics. It has lower 

limit and upper limit, the lower limit replaces the data 

values when the data values are lower or equal to lower 

limit, the upper limit replaces the data values when the data 

values are greater or equal to upper limit. Therefore the data 

we get are not correct data but censored data. Zheng et al [1] 

proposed Hybrid Monte Carlo Markov chain and 

Hamiltonian method to estimate parameters of interval 

censored data. Cheng and Mordeson [2] investigated the 

fuzzy estimation of the parameter of underlying probability 

distribution for total failure time of censored data. In this 

article we proposed RBFNs with SVR to identify a 

distribution under the censored data. 

Radial basis function networks (RBFNs) with one 

hidden layer and rapid convergence speed used to identify 

system and predict generally [3-7]. But the number of 

hidden nodes, the initial parameters of the kernel and the 

initial weights of the networks not decided mathematically 

yet. Besides, the data we obtained sometimes contain the 

error measurement due to data censored. 

Vapnik [8] proposed Support vector regression (SVR) 

approach in 1995, by the ε  insensitive loss function can 
make use of a small subset of the training data, called the 

support vectors (SVs), to approximate the desired outputs 

within a tolerance band. That is, the SVR uses the quadratic 

programming optimization to determine the initial structure 

of the traditional RBFNs. 

In this article, the purpose is to identify a system 

under censored data in one of the variables. First, an ε  
SVR is used to determine the number of hidden nodes, the 

initial parameters of the kernel, and the initial weights of 

the RBFNs. Then the algorithm is applied to tune the 

parameters of radial basis functions and the synaptic 

weights. It is expected that the proposed method has fast 

convergence speed and the ability coping with censored 

data can identify perfectly. 

 

2. RBFNs FOR THE IDENTIFICATION OF THE 

NONLINEAR SYSTEM 
 

Assume that the unknown nonlinear system is 

expressed by 

 )),(,),(),(,),(()1( mtutuntytyfty −⋅⋅⋅−⋅⋅⋅=+  (1) 

where )(ty  is the output of the system, )(tu is the input 

of the system, )(⋅f is the unknown nonlinear function to be 

estimated by a neural network, and n and m are the 

structure orders of the system. Our purpose is to find a 

identification model 
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to approximate )1( +ty  as close as possible.  

A structure of the RBFNs consists of an input layer, a 

hidden layer of radial basis functions and a linear output 

layer. When the radial basis functions are chosen as 

Gaussian functions, an RBFNs can be expressed in the form 
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where jŷ  is the jth output, 

))(,),1(),(),(,),1(),(( mtututuntytyty −⋅⋅⋅−−⋅⋅⋅−=x  is 

the input to the neural networks, ,1,0, pjLiwij ≤≤≤≤  

are the synaptic weights, ,0, Lii ≤≤m  and ,0, Lii ≤≤σ  

are the centers and the widths of Gaussian functions 

respectively, and L is the number of the Gaussian 

functions, in which we can find that L  also denotes the 

number of hidden nodes. 

 

3. INITIAL STRUCTURE BY SVR APPROACH 
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An SVR approach is used to approximate an unknown 

function from a set of (input, output) samples 

}.,,1),,{( Niyii L=x Suppose that a set of basis functions 

{ }N
k

g
1

)( =k
x  is given, there exists a family of functions that 

can be expressed as a linear expansion of the basis 

functions. The theme is then be changed into finding the 

parameters of the following basis linear expansion 
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where ( )mθθθ ,,, 21 ⋅⋅⋅=θ  is a parameter vector to be 

identified and b  is a constant to be found.  

Vapnik
 
[4] firstly proposed the ε -SVR approach. 

The solution for the theme is to find ),( θxf  that 

minimizes 
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subject to the constraint 
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where ( )⋅εL  is the ε -insensitive loss function defined as 
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for some previously chosen nonnegative number ε . 
By using the Lagrange multiplier method, it was 

shown in [8] that the minimization of (5) leads to the 

following dual optimization problem. 
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subject to the constraint 
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It proposed by Vapnik [8] and Smola et al. [9] and the 

inner product of basis function )()( sr gg xx ⋅  is replaced 

via the kernel function 

 ,)()(),( srsr ggK xxxx ⋅=  (10) 

Hence the optimization of (8) is rewritten as 
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It was shown in Vapnik [8] that the solution of the SVR 

approach is in the form of the following linear expansion of 

kernel function 
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This means that the parameter kθ  in equation (4) can be 

represented as )()(
1

*
k
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−αα . Note that only some of 
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αα − ’s are not zeros and the corresponding vectors 

kx ’s are called support vectors (SVs). 

In this paper, the Gaussian function is used as the 

kernel function. And let ,),(),( bff s −= λλ xx  hence, (9) 

can be rewritten as 

  )
2

exp(),(
2

2
#

1 k

k
SV

k
ksf

σ
λ

xx
λx

−
−= ∑

=
, (13) 

where SV#  is the number of SVs, 0)( * ≠−= kkk ααλ  

and kx  are SVs. 

From equation (13) and (3), ,#SV ,k ,kλ  kx and 

kσ  in (13) can be regarded as the iijwiL m , , ,  and iσ  

in (3), respectively. From the above derivation, we can find 

that the number of hidden nodes L , the initial weights ijw , 

the initial parameters im  and iσ , of the RBFNs are 

determined via the SVR approach. 

 

4. ANNEALING ROBUST LEARNING 

ALGORITHM FOR UPDATING PARAMETERS 
 

When utilizing the RBFNs for the identification of 

systems, the goal is to minimize 
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=
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where 

 ),(ˆ)()( ksk ykyhe x−=  (15)  

h  is the epoch number, )(hek is the error between the kth 

desired output and the kth output of the RBFNs at epoch h  

and )(⋅ρ  is a logistic loss function and defined as 
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where )(hβ  is a deterministic annealing schedule acting 

like the cut-off points. In this paper, the annealing robust 

learning algorithm (ARLA) is applied to train the proposed 

RBFNs. In the ARLA, the properties of the annealing 

schedule )(hβ  have [10]: 

(A) intialβ , )(hβ  for the first epoch, has large values; 

(B) +→ 0)(hβ  for ∞→h ; 

(C) 
h

ch =)(β  for any h  epoch, where c  is a 

constant. 

Based on the gradient-descent kind of learning 

algorithms, the synaptic weights ijw , the centers im  and 

the width iσ  of Gaussian function are updated as 
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where η  is a learning constant. 
 

5. SIMULATION RESULTS 
 

In this section, the root mean square error (RMSE) of 

the training data is used to measure the performance of the 

proposed networks. The RMSE is defined as  
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where iy  is the desired output and iŷ  is the output of 

the proposed method. 

Example: 

A bivariate normal distribution is defined as 
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where xµ  and yµ  are the mean of x  and y , 2
xσ  and 

2
yσ  are the variance of x  and y , and ρ  is the 

correlation coefficient of x  and y . We suppose that x  

data have censored, and the upper limit is equal to 3, the 

lower limit is equal to -3. The diagram of exact data and 

censored data are shown in Fig. 1 and Fig. 2. The proposed 

networks are chosen as 

))2(),1(),(),1(),((ˆ)1(ˆ −−−=+ txtxtxtytyfty .  (23) 

50 simulation data points are generated from equation 

(19). The parameters in ε -SVR are set as C=10, the 
Gaussian kernel function with 95.0=ε , 2=σ , with the 

hidden nodes (i.e. the number of SVs) is obtained as 15. 

Based on the initial structure and the learning constant is 

0.05, after 3000 epochs training, the final training output, 

the error are shown in Fig. 3 and Fig. 4, and the final 

RMSE is 0.0242. From the simulation results show that the 

proposed method can overcome the error measurement due 

to censored data and attain a good identification. 

 

6. CONCLUSIONS 
 

In this paper, an SVR based the RBFNs with ARLA 

for the identification of bivariate normal distribution is 

developed. We firstly utilize the SVR approach to 

determine the number of hidden nodes, the initial 

parameters of the kernel and the initial weights of the 

proposed RBFNs. Then the ARLA is applied to tunes the 

parameters of the kernel and the weights of the bivariate 

normal distribution. From the result indicated that the 

proposed method can be used as a reliable technique for the 

training of bivariate normal distribution. 
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Fig. 1. The diagram of example for exact data. 

 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

x

y

 
Fig. 2. The diagram of example for censored data. 
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Fig. 3. The diagram of example (dot scatter) and the final 

result of the identification example (circle scatter) under 

censored data. 

 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

e
rr
o
r

 
Fig. 4. The error of training under censored data. 

 
 

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13), 
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 221




