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Abstract: In this article, adaptive learning neural networks (ALNNs) are proposed to identify nonlinear systems. In the 
proposed NNs, integrating support vector regression (SVR) and adaptive learning algorithm is adopted to optimize the 
structure of neural networks. In the evolutionary procedure, first, SVR is adopted to determine the number of hidden layer 
nodes and the initial structure of the NNs. After initialization, adaptive learning algorithm (ALA) with nonlinear time-varying 
learning rate is then applied to train NNs. In ALA, a computationally efficient optimization method, particle swarm 
optimization (PSO) method, is adopted to simultaneously find optimal learning rates. Due to the advantages of SVR and 
adaptive learning algorithm, the proposed NNs (SVR-ALNNs) have good performance for identifying a magneto-rheological 
(MR) damper system. Simulation results are illustrated the feasibility and superiority of the proposed SVR-ALNNs. 
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1 INTRODUCTION 

Due to the characteristic of structure simplicity, low 
power requirement, large force capacity, and high dynamic 
range, a magneto-rheological (MR) damper attracts attentions 
as developed semi-active control devices for structural 
control applications recently. In order to describe the 
performance of an MR damper, Spencer et al. in 1997 
proposed a phenomenological model based on a Bouc-Wen 
model [1], Chang and Chang and Zhou [2] developed a 
neural network model, Zhou and Chang [3] proposed an 
adaptive fuzzy control, and Du et al. designed a model of an 
MR damper by evolving radial basis function networks [4]. A 
nonlinear black-box model was proposed to identify an MR 
damper system to design a force-sensorless control method 
[5]. 

In this article, adaptive learning neural networks (ALNNs) 
are proposed to identify an MR damper system. In the 
proposed NNs, integrating support vector regression (SVR) 
and adaptive learning algorithm is adopted to optimize the 
structure of neural networks. In the evolutionary procedure, 
first, SVR [6, 7] is adopted to determine the number of 
hidden layer nodes and the initial structure of NNs. After 
initialization, ALA with nonlinear time-varying learning rate 
is then applied to train NNs. In the adaptive learning 
algorithm, a computationally efficient optimization method, 
particle swarm optimization (PSO) method, is adopted to 
simultaneously find optimal learning rates. Due to the 
advantages of SVR and adaptive learning algorithm, the 
proposed NNs (SVR-ALNNs) have good performance for 
identifying the MR damper system. Simulation results are 
illustrated the feasibility and superiority of the proposed 
SVR-ALNNs. 

2 SVR-BASED INITIAL NNs 

Neural networks can be used to estimate the input–output 
relation of a nonlinear system. In this paper, radial basis 
function neural networks (RBFNNs) are adopted because 
they have a simple structure. When the Gaussian function is 
chosen as the radial basis function, RBFNNs can be 
expressed in the form 
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ˆ ˆ ˆ( ) ( ) ( )pt y t y t=y  is the output vector; ijw  is the 

synaptic weight; im  and iσ  are the center and width of 
Gaussian functions respectively; and L  is the number of 
Gaussian functions, which is also equal to the number of 
hidden layer nodes. 

It is very difficult, if not impossible, to solve the above 
problem directly. Usually, the initial values of ,L  ,ijw  ,im  

and iσ  are chosen first. Then a training algorithm is applied 
to the NNs to search for the optimal combination of these 
values in an iterative manner. 

In support vector machine (SVM), an SVR method can 
approximate an unknown function. An output of the 
RBFNNs and its corresponding training pairs will be used for 
simulations. Meanwhile, assume that a set of basis functions, 

( ),  1, 2, , ,lg l M=x  is given. Then the problem of funct-
ion approximation is transformed into one of finding the 
parameters of the basis linear expansion. 
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where θ  is a parameter vector to be identified and b  is a 
constant to be determined. 

From [8], one sees that the solution is to find ( , )f x θ  
that minimizes 
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subject to the constraint 
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where ( )Lε ⋅  is the ε-insensitive loss function defined as 
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for some non-negative numbers .ε  
By using the Lagrange multiplier method, it has been 

shown in [6] that the minimization of (3) leads to a dual 
optimization problem. A set of basis functions ( )l rg x  is 
replaced via the kernel function. 
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Then the dual optimization problem can be expressed as 
follows: 
Minimize 
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subject to the constraint 
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and the solution is in the form of the following linear 
expansion of kernel functions [6] 
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Note that some of the *( )l lα α−  values are not zeros and the 

corresponding vectors lx  are called support vectors (SVs). 
In this study, since the Gaussian function is used as the 

kernel function, (9) can be rewritten as 
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where l is the number of SVs, *( ) 0l l lλ α α= − ≠ , and lx  

denotes SVs. Comparing (10) with (1), # SV  ,l  ,lλ  and 

lx  in (10) can be regarded as ,L  ,i  ,ijw  and im  in (1), 
respectively. 

3 ADAPTIVE LEARNING NNs 
To overcome the existing problems in robust backpropa-

gation learning algorithms, the annealing robust learning 

algorithm (ARLA) is adopted in the training procedure of the 
presented NNs by Chung et al. [7]. A cost function for the 
annealing learning is defined here as 
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t is the epoch number, ( ) ( )k

je t  is the error between the kth 

desired output ( )k

jy  of the annealing learning NNs at epoch 
t  for the jth input–output training data in an identification 
system, ( )tβ  is a deterministic annealing schedule acting as 
the cut-off point, and ( )ρ ⋅  is a logistic loss function defined 
as 
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To evaluate the performance of training NNs, the root mean 
square error (RMSE) of the training data is adopted and 
defined as 
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Based on a gradient descent type of learning algorithm, 
the synaptic weights ijw , the centers im , and the widths iσ  
of Gaussian functions are updated, respectively, as 
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where ,wη  ,mη  and ση  are the learning rates for the 

synaptic weights ijw , the centers im , and the widths iσ , 

respectively, and ( )ϕ ⋅  is usually called the influence 
function. The adaptive annealing schedule has the following 
properties [7]: 
(A) initial ,β  ( )tβ  for the first epoch, has large values. 

(B) ( ) 0tβ +→  for t →∞ . 

In the ALA, a nonlinear time-varying evolution concept is 
adopted over iterations, in which the learning rates ,wη  ,mη  
and ση  with a high value ηmax and nonlinearly decreases to 
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ηmin at the maximal number of epochs, respectively. This 
means that the mathematical expressions are given as shown 
as 
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where epochmax is the maximal number of epochs and h is the 
current number of epochs. In the updated procedure, 
appropriate functions for the learning rate and ,wη  ,mη  and 

ση  can promote the performance of ALNNs. However, 
simultaneously determining the optimal combination of ,pw  

,pm  and pσ  is a time-consuming work. An efficient 
evolutionary algorithm, PSO, will be adopted to determine 
the optimal solution ( , , ).pw pm pσ  

4 SIMULATION RESULTS 

The identification scheme of a nonlinear system is 
depicted in Fig. 1, training input-output data are obtained by 
feeding a signal x(k) to the system and measure its 
corresponding output y(k+1) Then subject to the same input 
signal, the objective of identification is to construct an SVR-
ALNNs using PSO method, which produces an output 
ˆ ( 1)k +y  to approximate y(k+1) as closely as possible. 

In this section, a magneto-rheological (MR) damper 
system adopted to verify the feasibility of the proposed SVR-
ALNNs. When applying the proposed algorithm, the 
population size, the maximal iteration number, and the 
maximal epoch number are chosen to be 30, 100, and 1000, 
respectively. The variables ,pw  ,pm  and pσ  in learning 
rate functions (19) to (21) are all chosen as real numbers in 
the range  [0.1,  0.5] . Meanwhile, the values of maxη  
and minη  are set as 4.0 and 1.0, respectively. 
Example:  

A phenomenological model has been proposed by 
Spencer [1] to portray the behaviour of a prototype MR 
damper. This phenomenological model is based on a Bouc–
Wen model, the model as shown in Fig. 2, and is governed by 
the following seven simultaneous equations: 
 1 1 0( ),F c y k x x= + −  (22) 

 0 0

0 1

1
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y z c x k x y

c c
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 1 ( ) ( ),n nz x y z z x y z A x yγ ζ−
= − − − − + −  (24) 

 ,a buα α α= +  (25) 

 1 1 1 ,a bc c c u= +  (26) 

 0 0 0 ,a bc c c u= +  (27)

  ( ),u u vλ= − −  (28) 
where F is the force generated by the MR damper; x is the 
displacement of the damper; y  is an internal pseudo 
displacement of the MR damper; u is the output of a first 
order filter; v is the command voltage sent to the current 
driver; 1k  is the accumulator stiffness; 0c  and 1c  are the 
viscous damping coefficients observed at large and low 
velocities, respectively; 0k  is the gain to control the 

stiffness at large velocities; 0x  is the initial displacement of 

spring 1k  associated with the nominal damper force due to 
the accumulator; ,  ,  Aγ ζ  are hysteresis parameters for the 
yield element, and α  is the evolutionary coefficient. A set 
of parameters which is obtained by Spencer to characterize 
one MR damper using experimental data and a constrained 
nonlinear optimization algorithm is listed in Table 1. 

The data is generated using a sinusoidal displacement 
function with an amplitude of 1±  cm and a frequency of 
3Hz and a sinusoidal voltage function with mean value of 
1.6 V, an amplitude of 0.5V and a frequency of 0.5 Hz. The 
time duration for this validation data is 4s and the time 
increment is 0.002s which amounts to a total of 2000 training 
data sets. 
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)1( +ke
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Fig. 1. The proposed PSO-based SVR-ALNNs scheme for 
identification of a nonlinear system. 
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Fig. 2. Phenomenological model of MR damper. 
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Table 1. Parameters for an MR damper 

 
Problem 1:  
In this investigation, when applying SVR, various parameters 
of 0.2ε =  and 0.1ε =  in (7) for 100C =  in (8) are 
adopted to determine the initial structure of NNs, respectively. 
In the ARLA, various learning rates, 1.0 4.0η≤ ≤ , are used 
to train the NNs. After 1000 training epochs, the RMSE values 
for various learning rates are obtained, respectively. The 
details of the simulation results are shown in Table 2. 
 
Problem 2: 
With the nonlinear learning rates, the ALA is adopted to train  
NNs, in which the optimal learning rates are determined by 
linear time-varying evolution PSO method [9]. The optimal 

sets are obtained as (pw, pm, pσ)=(4.3658, 0.01, 1.3637) and 
(pw, pm, pσ) =(2.4125, 0.1035, 3.0082) for 0.2ε =  and 

0.1ε =  respectively. Meanwhile, the final values of RMSE 
with ALNNs are found to be 0.0070, and 0.0038 shown in 
Table 2. To show the superiority of the proposed SVR-
ALNNs, the comparison of the proposed NNs with SVR-
ARLA-NNs has been shown in Table 2. From Table 2, the 
proposed SVR-ALNNs have obtained promising results after 
only 1000 training epochs. 

5 CONCLUSIONS 
This paper presents the integrating SVR and ALA to train 

NNs for identification of an MR damper system. With the 
initial structure of the NNs using SVR method, the nonlinear 
time varying learning rates are simultaneously determined by 
PSO method to perform the ALA. Then the optimal NNs are 
obtained to identify the MR damper system. From the 
simulation results, one can conclude that the proposed SVR-
ALNNs using PSO method have good performance for 
identification of the MR damper system using only few 
training epochs. Meanwhile, the superiority of the proposed 
SVR-ALNNs with nonlinear learning rates over SVR-ARLA-
NNs with fixed learning rates for identification has been 
verified. The proposed SVR-ALNNs can be further extended 
to identify more complex systems. 

 
Table 2. The values of RMSE (14) for an MR damper system after 1000 training epochs, in which ARLA with various 

learning rates and ALA with time-varying learning rates are applied to train NNs. 
ARLA (learning rate η ) ε  ALA 

4.0 3.5 3.0 2.5 2.0 1.5 1.0 
0.2 0.0070 0.0092 0.0090 0.0114 0.0083 0.0081 0.0101 0.0152 
0.1 0.0038 0.0056 0.0058 0.0049 0.0062 0.0080 0.0083 0.0111 
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Parameter Value Parameter Value 

0

ac  21.0 /Ns cm  aα  140 /N cm  

0

bc  3.50 /  Ns cm V  bα  695 /  N cm V  

0k  46.9 /N cm  γ  2363 cm−  

1

ac  283 /Ns cm  ζ  2363 cm−  

1

bc  2.95 /  Ns cm V  n  2  

1k  5.00 /N cm  λ  1190 s−  

0x  14.3 cm  A  301 
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