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Abstract: Engineers and researchers are paying more attention to reinforcement learning (RL) as a key technique for realizing
computational intelligence such as adaptive and autonomous decentralized systems. In general, it is not easy to put RL into
practical use. In prior research our approach mainly dealt with the problem of designing state and action spaces and we have
proposed an adaptive co-construction method of state and action spaces. However, it is more difficult to design state and action
spaces in dynamic environments than in static ones. Therefore, it is even more effective to use an adaptive co-construction method
of state and action spaces in dynamic environments. In this paper, our approach mainly deals with a problem of adaptation in
dynamic environments. First, we classify tasks of dynamic environments and propose a detection method of environmental
changes to adapt to dynamic environments. Next, we conducted computational experiments using a so-called “path planning
problem” with a slowly changing environment where the aging of the system is assumed. The performances of a conventional
RL method and the proposed detection method were confirmed.
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1 INTRODUCTION for dynamic environments have been proposed. However the

In recent years, artificial systems have become more com- researchers have only referred to the dynamic environment,
plicated and large-scaled. The conventional way, in which without focusing on the specific problems that are inherent
systems are controlled in a top-down manner mainly by hu- in a dynamic environment. We make a classification of dy-
mans, is facing up to the difficulties of not only optimality namic environments and propose a detection method of en-
but also adaptability and flexibility. One of the solutions vironmental changes to adapt a dynamic environment. In ad-
to this issue is to develop an autonomously adaptive sys- dition, computational experiments are conducted by using a
tem. Engineers and researchers are paying more attention so-called “path planning problem” with a slowly changing
to Reinforcement Learning(RL)[1] as a key technique of re- environment where the aging of the system is assumed. The
alizing autonomous systems. In general, however, it is not performances of a conventional RL method and the proposed

easy to put RL into practical use. Such issues as satisfy- detection method are confirmed.

ing the requirement of learning speed, resolving the percep-
tual aliasing problem, designing reasonable state and action

spaces of an agent and adapting dynamic environments must 2 Q-LEARNING

be resolved. In prior research, our approach mainly dealt

with the problem of designing state and action spaces and we Q-learning works by calculating the quality of a state-
have proposed a co-construction method of state and action action combination, namely the Q-value, that gives the ex-
spaces[2]. However, it is more difficult to design state and pected utility of performing a given action in a given state.
action spaces in dynamic environments than in static ones. By performing an action a € Aq, where Aq C A is the set
Thus, it may be even more effective to use an adaptive co- of available actions in Q-learning and A is the action space
construction method of state and action spaces in dynamic of the agent. The agent can move from state to state. Each
environments. state provides the agent with a reward r. The goal of the

In this paper, our approach deals with problems of adap- agent is to maximize its total reward.

tation in dynamic environments. Previously, many methods The Q-value is updated according to the following for-
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mula, when the agent is provided with the reward:

Q(s(t-1), a(t-1)) — Q(s(t-1), a(t-1))
Faq{r(t-1) + 7 max Q(s(t),b) — Q(s(t-1), a(t-1))} (1)

where QQ(s(t-1), a(t-1)) is the Q-value for the state and the
action at the time step ¢-1, aq € [0, 1] is the learning rate of
Q-learning, v € [0, 1] is the discount factor.

The agent selects an action according to the stochastic
policy m(als), which is based on the Q-value. 7(a|s) speci-
fies the probabilities of taking each action a in each state s.
Boltzmann selection, which is one of the typical action selec-
tion methods, is used in this research. Therefore, the policy
m(als) is calculated as

exp(Q(s,a)/T)
2. exp(Q(s,0)/7)

e A
where 7 is a positive parameter labeled temperature.

@)

m(als) =

3 DYNAMIC ENVIRONMENTS

Dynamic environments are time-varying environments,
i.e. when the state transition probability T'(s(t), a(t), s(t +
1)), which is the probability of transition from s(¢) to s(¢+1)
under a(t), changes, or the return function R(s, a), which is
the reward at s under a, changes, an “environmental change”
has occurred and the environment is a dynamic environment.
Hereafter on the premise of time-variance, the state transi-
tion probability and the reward function including time ¢ are
shown T} (s(t), a(t), s(t + 1)) and R (s, a) respectively.

The learning becomes difficult when environmental
changes occur as in the following formula:

arg max Ry(s(t), a) # arg max Riv1(s(t),a)  (3)
ac ac

where the best action changes over time in the states where
the agent transits. In particular, in the course of making
the action selection probability of the best action larger, en-
vironmental changes occur. After such an occurrence, the
agent first needs to make the action selection probability of
the action smaller, for example if the learning module is Q-
learning, in the course of making the entropy of action selec-
tion probability H (s):

H(s) = —(1/log|Aq|) Y plals)logp(als), )
aEAQ

the agent needs a process for finding the best action again.
This process is the reason for learning difficulties in dynamic
environments.

4 CLASSIFICATION OF DYNAMIC ENVIRON-
MENTS

Until now, Simada et.al.[3] divide ‘share states’ into 2
types: if the following equation is satisfied, then the state
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is the ‘share sate’ of typel, and if not, the state is the ‘share
state’ of type?2.

arg max R;(s,a) = arg max R;(s, a) ®)
aEA ac
Also, they indicate that determining adaptability to dynamic
environments is dependent on the abilities of the “detection
of the states of type 1 and type 2” and “reusing and re-
studying of learning results”.

In this section, previous works are organized by classify-
ing this tasks of dynamic environments more finely.

For the sake of ease, we limit to episodic tasks such as ac-
quiring a series of actions from start states to goal states. In
our classification of dynamic environments we use the Boltz-
mann selection method(Eq.(2)), that is, the agent selects an
action with a larger value based on a higher probability.

Here, we assume that each increasing value of the entropy
of the action selection probability is given and is caused by
environmental changes, as seen in H, c(T, M, tg) where tg, is
the episode, M is the method used, and 7" is the task.

1. The a) presence or b) absence of the influence of envi-
ronmental changes:

If the following formula is satisfied, then the agent can
adapt to environmental changes by the learning perfor-
mance of the method M even if environmental changes
occurred.

Vig(Hc(T, M, tg) < 0) (6)

2. The process of environmental changes:

In almost all previous works, it is assumed that the cases
of

1) 31ty (Ho(T, M, tg) > 0) and He (T, M, tg) is arep-
etition of a shape similar to an impulse function. In par-
ticular, those tasks in which the characteristic changes
momentarily or stages are switched are assumed. On
the other hand, 2) Hc¢ (T, M, tg) is a continuously small
positive value, if the aging of the system or a change of
human characteristics is assumed.

3. The timing of the appearance of environmental changes
in relation to learning progress:

It is known that the entropy of the action selection
probability approaches 0 in tasks without environmen-
tal changes[4]. Here, if the task has no environmen-
tal changes, it could be divided into 3 phases based
on the entropy of the action selection probability: a
prophase tgp, a metaphase tgy, and a anaphase of
learning tgr,. The task can be classified according to
when the appearance of environmental changes tpc =
min{tg|Hc(T, M,tg) > 0} occurs: i)tpp, ii)tpws
or iii)tgr,. Normally, in the case of the task having
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tgc € tgs, it is easy to adapt to environmental changes
since the entropy of the action selection probability is
large. In the case of the task having tgc € tgp, influ-
ences of environmental changes become large since the
entropy is small.

Except in b) the absence of influences of environmental
changes, it is necessary for researchers to take the remain-
ing 2 x 3 = 6 types into consideration. In this paper, we
focus on the above 6 types.

In viewing of previous works organized in consideration
of the above classification of tasks of dynamic environments,
Takahashi et.al.[5] deal with 3 types: i), ii), and iii) in the case
of a)1) above by introducing an evaluation index of learning
progress in a detection method of environmental changes.
Other works deal with the types a)l)ii) and a)l)iii)[3] as
above. Thus, it is necessary for researchers to consider tasks
of dynamic environments regarding the types other than these
above.

5 DETECTION METHOD OF ENVIRONMEN-

TAL CHANGES

The entropy of the action selection probability H(s),
shown in Eq.4, becomes smaller in tasks without environ-
mental changes. In contrast, when an environmental change
occurs, the entropy becomes larger from the time of the oc-
currence. Hence, when the entropy H (s) begins to increase,
the agent is able to detect the environmental change.

However, Preliminary computational experiments indi-
cate that the entropy of the action selection probability in
the state s (Eq.4) shows a range of fluctuations even if in
a static environment. In order to decrease false-detections of
environmental changes by the influence of the fluctuations,
the agent detects the time of the occurrence of the reversal
of a downward trend using MACD (Moving Average Con-
vergence / Divergence), which is one of the most popular
tools in technical analysis trading. The entropy H ]'5 (s),
after updating the Q-value, is used to refine the detection only
when the agent selects an action with the maximal Q-value,
if the learning module is Q-learning. Then, a short-term
(n = Ormas) EMA (Exponential Moving Average) value
and a long-term (n = Opmar) EMA value of the entropy
are calculated according to the following equation at a rate of
once every 6; update of H (s).

EMA"™(s(t)) = (1 — o) x EMAZ(s(t)) + o x H{ (s(t))

@)
where EMA7,;(s(t)) is the latest known value of EMA in
s(t), « = 2/(n + 1) and n are constant numbers express-
ing the smoothing constant and the average amount of time
respectively.
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Table 1. Usual parameters of MACD

Parameter | Value || Parameter | Value

OEMas 12 OEMAL 26
Ovaco 9
10,) >
starl start
I I m —
’; 450 onl

450 (500,500)

Fig. 1. Dynamic path planning problem.

A MACD (Moving Average Convergence / Divergence)
value is calculated according to the following equation, after
updating the short-term and the long-term EMA values.

MACD(s) = EMA”mMAs (5) — EMA%MAL(5)  (8)

In addition, a ‘signal’ value is a moving average for the
latest series of Oyiacp values of MACD(s). In particular,
when MACD(s) becomes larger than the signal value and
MACD(s) < 0 and the following formula is satisfied from
the condition of MACD(s) being smaller than the signal
value, the agent detects the environmental change.

MACD(s) — MACDg4(s) > 0.01 ©9)

where, MACD,14(s) is the latest known value of MACD(s).
Here, the above formula has been added in order to detect
environmental changes only when a rapidly increasing trend
occurs.

Usual parameters of MACD shown in Table 1 to detect en-
vironmental changes are used in the following experiments.

When the environmental change is detected, all Q-values
in the detected state are set to the average value of the Q-
values in the detected state.

6 COMPUTATIONAL EXAMPLES

Q-learning (hereafter called “QL”) and the proposed de-
tection method (hereafter called “PD”) are applied to a so-
called “path planning problem” with a slowly changing envi-
ronment where the aging of the system is assumed in a con-
tinuous state and action spaces, as shown in Fig. 1. Here,
the agent has a circular shape (diameter 50 [mm]), and the
continuous space is 500 [mm]x500 [mm] bounded by the
external wall, with internal walls as shown in black. One of
internal walls is slowly extended to the right from an episode

426



The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th *13),

Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

10000 T T

1000 ff

ko
[
.
L
‘»"\f“‘ﬂh'“k’y‘u o Ly
L H )

average steps

100 f

0 500 1000 1500 2000 2500 3000
episodes

Fig. 2. Required steps of 3 occurrence times of the environ-
mental change by Q-learning.

tps to an episode tgr as shown in the continuous space pic-
tured on the right of Fig. 1. The agent can observe the center
position of itself (x4, ya) as the input, and decide the direc-
tion 04 as the output. The agent moves 25 [mm] in a direction
defined by 0 to which gaussian noise has been added.

The positive reinforcement signal 7, = 10 (reward) is
given to the agent only when the center of the agent arrives
in the goal area, and the reinforcement signal is 7, = 0 at all
other steps. The period from when the agent is located at the
starting point to when the agent is given a reward, labeled as
1 episode, is repeated.

After dividing the state space evenly into 20 x 20 spaces,
and the action space evenly into 8 spaces, QL and PD based
on QL are compared with 3 occurrence times of the environ-
mental change: tgg = 50, tgym = 500, and tg;, = 1500
[episode]. The internal wall is extended to x = 500 dur-
ing 175 [episodes] from the occurrence of the environmental
change.

Computer experiments have been carried out with the pa-
rameters of Q-learning: ag = 0.1,7 = 0.1, and v = 0.9. In
addition, the rating number 6, of the detection method is set
at 5. All initial Q-values are set at 5.0 as the optimistic initial
values[1].

The average number of steps required to accomplish the
task was observed during learning over 20 simulations with
QL and PD, as described in Fig. 2 and Fig. 3 respectively.
The average number of detections was observed during learn-
ing over 20 simulations with PD, as described in Fig. 4.

It can be seen from Fig. 2 and Fig. 3 that, 1) when the en-
vironmental change occurs later, that is, as the learning pro-
gresses, the influence of the environmental change becomes
larger, 2) PD has better performances than QL with regard to
the influences of the environmental change.

It can be seen from Fig. 4 that, 3) PD has better perfor-
mances to detect the environmental change as the learning
progresses, 4) but PD has few false-detections.
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Fig. 3. Required steps of 3 occurrence times of the environ-
mental change by the proposed method.
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Fig. 4. Number of detections of 3 occurrence times of the
environmental change

7 CONCLUSION

We have classified tasks of dynamic environments and
proposed the detection method of environmental changes to
adapt to dynamic environments. Then, with computational
experiments we confirmed that the proposed method has bet-
ter performances than Q-learning with regard to the influ-
ences of the environmental change, and as the learning pro-
gresses, detection of the environmental changes improves.

Our future projects include 1) to upgrade the detection
method to consider 3 occurrence times of the environmental
change, and 2) to apply the adaptive co-construction method
of state and action spaces in dynamic environments.
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