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Abstract: The hyper-redundant robot has more degrees-of-freedom. The most difficulty of the hyper-redundant is to finding 

the inverse kinematic problem. Most of usually used method is Neural Network. However, it is difficult to find the suitable 

structure and number of node. This paper shows the novel algorithm that can find the suitable structure and number of node 

depends on the problem. The performance of this algorithm will demonstrated in the computer simulation and compare with 

the Back-propagation with same structure. The algorithm shows the good performance to adapt the number of node with less 

error to solve the 8-20 serial link chain hyper-redundant robots. 
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1 INTRODUCTION 

The hyper-redundant robot is the robot that has more 

than the minimum numbers of degrees-of-freedom are 

termed “many kinematically redundant”. The hyper-

redundant are used in operation to snakes, elephant trunks, 

and tentacles. There are a number of very important 

applications such as obstacle avoidance, manipulated task. 

However, the most difficulty in Hyper-redundant robot is 

controlling the inverse kinematics of its.  

The different techniques used for solving inverse 

kinematics can be classified as algebraic that do not 

guarantee closed form solutions, geometric that usually 

used the curve and constraint, and iterative. The iterative 

methods converge to only a single solution. The most 

learning method that are usually using Neural networks. 

The Neural Netwoks usually used to solve the problem of 

inverse kinematics are Back-propagation and Kohonen 

network. However, the most question of using neural 

network is “How many are the best number of the nodes? ”  

In this paper, I proposed a new sequential learning 

algorithm, which is able to adapt the structure of the 

network. Using this algorithm, it is possible to find the 

suitable number of hidden node. 

 

2 HYPER-REDUNDANT ROBOT 

Highly redundant manipulators or hyper degree of 

freedom (HDOF) has more degrees of freedom (DOF). A 

HDOF manipulator can perform manipulation tasks, such 

as moving in non-convenient environments, and pushing 

and caging a various sizes and shapes of objects. Due to all-

in-one arms, a HDOF manipulator significant enhances the 

caging method as it, allows caging to perform in a variety 

of configuration. However, this arm must always maintain a 

certain shape around an object. 

HDOF has been used by several researchers for solving 

control problems such as kinematic modeling [1], [2] path 

planning [3], [4], inverse kinematics [5], [6], [7], [8], 

locomotive gait design [9], [10], obstacle avoidance [11], 

[12], serpentine locomotion control [13], [14] and 

sidewinding locomotion control [15] problems.  

In our work, we study the shape control of a highly 

kinematic structure, called a HDOF arm manipulator. The 

HDOF is composed of serial chain links Nili ,....,1,  , 

connected to other with revolute joints 1,...,0,  Niji . Each 

link is a straight rigid part of length L  . The link 1l and link 

Nl  are called the base and the tail, respectively.  The angle 

1  is defined as the angle between link 1l  and x-axis. The 

set of angle defines the manipulator configuration as shown 

in Figure 1. 

 

 

Fig. 1. A hyper degree of freedom (HDOF) structure. 
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3 INVERSE-KINEMATICS PROBLEM 

A HDOF manipulator has ability to move in highly 

constrained environment or grasp various sized and shaped 

objects. HDOF manipulators are categorized into 3 types of 

mechanisms which are serial rigid, parallel rigid and 

tentacle-like. A serial rigid robot arm is consisting of links 

and joints in chain structure. In forward kinematics or direct 

kinematics, the joint displacement and link parameters are 

given in order to find the end-effector position. Conversely, 

the inverse kinematics is to solve for the joint displacement 

when the end-effector position is given. 

The transformation matrix relating i
th

 coordinate 

system (coordinate of end of link i) to the (i-1)
th

  

(coordinate of end of link i-1) coordinate system is Ti
i
1  

given by 
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where parameters are 

ia  = the distance from iẐ to 1
ˆ
iZ  measured along iX̂   

i = the angle from iẐ to 1
ˆ
iZ  measured along iX̂   

id  = the distance from iX̂  to 1
ˆ
iX  measured along  

iẐ  

i  = the angle from iX̂  to 1
ˆ
iX  measured along  iẐ  

iẐ = axisZi
ˆ of frame {i} 

iX̂ = axisX i
ˆ of frame {i} 

 

The transformation matrix is divided into two parts 

which are rotational part and translation part. 
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Transformation matrix form the base frame {0} to link 

n is described by 
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Since a HDOF manipulator has large number of de

grees of freedom (DOF), the inverse kinematics solutio

n is not unique. Moreover, the solution of inverse kine

matics of the robot arm is difficult to find. The algebr

aic and numerical methods are usually employed to sol

ve the inverse kinematics problem. The concept of alg

ebraic method is to transform the kinematics equations

 to a high degree polynomial in the tangent of the hal

f-angle of joint variable. However, it is complicate in t

he nonlinear system. 

The numerical methods that are widely used in solv

ing for inverse kinematics is the Newton-Raphson itera

tion method. Other optimization techniques can also be

 used. The concept of inverse kinematics problem is si

milar to minimization problem where the error between

 the current position and desired position is minimized.

 Therefore, nonlinear optimization techniques such as n

eural network [16] and genetic algorithm [17] can be 

applied to this problem. 

4 RADIAL BASIS FUNCTION (RBF) NETWORK 

The Radial Basis Function (RBF) Networks is a single 

hidden layer feed forward neural network as shown in 

Figure 2. Each node of the hidden layer has a parameter 

vector called the center. This center is used to compare with 

the network input vector to produce a radial symmetrical 

response. The response of the hidden layer are scaled by the 

connection weights of the output layer and then combined 

to produce the network output. The response of the  

hidden node to input data vector , dimensionality M, is 

given by (4). 

 

   )e xp (
2

jiij xx                (4) 

 

where   is an M-dimensional center and  is a constant 

which determines the spread factor of the symmetric 

response of the hidden node. The network output is defined 

as 
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where  are the network's second layer connection 

weights and k is the number of hidden nodes. 

 

The widely used RBF network, may use other 

functions e.g. piecewise linear, cubic approximation, the 

thin plate spline, the multiquadratic, and the inverse 

multiquadratic function in place of the Gaussian. 
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Fig. 2. Architecture of an RBF neural network 

 

The performance of the networks is measured by a Mean-

Squared-Error (MSE). The main objective of the training 

procedure is to approximate the underlying function of the 

system. 

 

5 THE NEW RBF NETWORK WITH 

PROPOSED ADAPTIVE STRCUTURE 

To determine an appropriate structure for the RBF 

network, a modified RBF network with adaptive structure is 

proposed. Initially, in the proposed structure, the radial 

basis layer has one hidden neuron. Afterward, the network 

iteratively appends one RBF node to the hidden layer at 

each training epoch until the error falls beneath an error 

goal or the maximum number of neurons has been reached. 

Unlike a traditional network with a fixed structure, the 

proposed network gradually searches for a minimum 

number of hidden nodes needed to meet the performance 

goal. The overall algorithm is given as the following: 

 

 Step 1. Initialize the network using the Structure 

having a single neuron in the hidden layer. 

 Step 2. For each training epoch, feed all input 

vectors to the network and train the network 

according to the RBF training algorithm. 

 Step 3. Find the input vector in which the network 

output yields the greatest error. 

 Step 4. Add one neuron to the hidden layer with its 

weight vector equals to the vector obtained from 

Step 3. 

 Step 5. Repeat Step 2 until the performance goal is 

met or the maximum number of hidden nodes has 

been reached. 

 

5 EXPERIMENTAL AND RESULT 

In this section, experimental results are presented in 

Table 1 and Figure 3. I try to solve the inverse-kinematics 

in vary the number of links from the 8 and 20 serial link 

chains. I will measurement the algorithm in term of the 

error, time and number of nodes when compares with back-

propagation neural network with same structure. The error 

is calculated from the distance between end-effector and 

target position. Our experiment is tested on the Core-I7 

3.4GHz and 16 GB of RAM. 

 

  

Fig. 3. Comparison between Back-Propagation Neural (Dot 

line) and our proposed method (solid line) of 9 links serial 

link chain 

 

Table 1. The comparison between Back-Propagation   

and Our proposed method 

 

Link 

Back-Propagation Our proposed 

method 

Node 

 

err time 

(s) 

Node err time 

(s) 

8 18 1.250 258 18 1.020 260 

9 24 3.041 301 24 2.570 284 

12 41 3.225 440 41 3.000 365 

14 52 4.655 665 52 4.080 556 

16 51 4.787 896 51 4.220 803 

18 52 5.200 994 52 5.050 925 

20 80 6.250 1226 80 6.220 1198 

 

From Table 1, when the number of the link increased, the 

error and time will increase. Especially, the time is very 

much consuming.  

 

6 DISCUSSION 

Our proposed method is show the performance of 

finding the suitable number of the node. The proposed 

method can solve the problem of inverse kinematic. 

Moreover, we can able to find the suitable number of node 

for other neural network such as Back-propagation. 

In the future, I will try to reduce the time consuming, 

because the time is abundantly grown when add the number 

of link. 

y 

x 
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