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Abstract: In this paper, flocking control in a limited space is considered. First, a new conception of safety-value is proposed
to evaluate the safety between agents and obstacles in a limited space. Then, a new distributed flocking control protocol called
the limited space flocking (LSF) algorithm is designed so as to extend the Olfati-Saber’s control protocol to the case of a limited
space. The algorithm utilizes control protocols corresponding to the safety-value, so the multi-agent system can automatically
change its velocity and structure to pass the limited space both quickly and safely. Finally, simulation results show that the
proposed algorithm can greatly improve the average velocity of systems and enhance the safety-value in a limited space.
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1 INTRODUCTION
Recently, multi-agent systems have drawn increasing at-

tention and many good results on the control protocol design
have been obtained in a series of works [1]-[6]. An important
issue in the control of multi-agent systems is to design a con-
trol protocol in order to achieve flocking behavior of systems.
A model introduced by Reynolds in [4] plays an important
role in the study of flocking. Reynolds’ three heuristic rules
(flock centering, collision avoidance and velocity matching
[7]) led to the first computer animation of flocking. Since
then, there emerge lots of works dealing with the flocking
problems [8]-[13]. Particularly, among these works the algo-
rithm proposed by Olfati, Saber [8] had a long-term influence
on the later development of the flocking control protocol de-
sign because they provided a theoretical and computational
framework for design and analysis of scalable flocking algo-
rithms.

Flocking algorithms have wide applications such as self-
assembly of connected mobile networks; massive distributed
sensing using mobile sensor networks; performing military
missions and so on. In some practical cases, for example
the control of the air traffic, the space where a system forms
flocking is limited. In these situations, by using most al-
gorithms [8]-[13] which may work well in free space, sys-
tem usually couldn’t achieve effective obstacle avoidance and
would greatly slow down the average speed. Under the con-
sideration that both the obstacle avoidance and the speed of
a system are important standards, in this paper a safety-value
is raised to evaluate the safety between agents and obstacles
in a limited space and a LSF (Limited Space Flocking) al-
gorithm, which is developed from Olfati-Saber’s algorithm
[8], is proposed to make the system to pass through a limited
space both safely and quickly.

2 PRELIMINARIES
In this section, we provide some basic concepts in graph

theory [14]-[16], algebraic graph theory [17], spatially in-
duced graphs (or proximity nets) [18] and make the prepa-

ration for us to introduce the LSF algorithm which will be
further discussed in the following section.
Consider the following ”boids” model of N agents:{

q̇i = pi
ṗi = ui

i = 1,2, . . . ,N, (1)

where qi is the displacement of agent i, pi is its velocity, ui
is the behavior rule of agent i

Definition 1 (detection shell [19]). The detection shell Ωi
of agent i is a region, within which the agent can sense the
relative location of neighboring agents.

we assume that all the Ωi have the same radius R. Denote
the set of agents contained in Ωi by Ni(t), which can be given
as

Ni(t) = { j : ∥qi −q j∥ ≤ R}, (2)

where ∥qi − q j∥, i, j = 1,2, . . . ,N is the relative position
vectors.

Definition 2 (neighboring graph [19]). The neighboring
graph, G = (V,E), is an undirected graph consisting of:

1. A set of vertices (nodes), V = {1,2, . . . ,n}, indexed by
the agents in the group, and

2. A set of edges, E = {(i, j)∈V ×V |i∈N j(t) or j ∈Ni(t)}
Definition 3 (adjacency matrix). The Adjacency matrix is a
matrix A= [ai j] with nonzero elements satisfying the property
ai j ̸= 0 ⇔ (i, j) ∈ E, with its elements:

ai j = ρk(∥q j −qi∥/R) ∈ [0,1], j ̸= i. (3)

where ρk(z) is a scalar function which smoothly varies
between 0 and 1 [20], and h ∈ (0,1) is a constant parameter,
the fomula of ρk(z) is shown below:

ρk(z) =


1 , z ∈ [0,h)

1
2 [1+ cos

(
π (z−h)

(1−h)

)
] , z ∈ [h,1]

0 ,otherwise
(4)
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The use of an indicator bump function leads to an adjacency
matrix with 0-1 position-dependent elements.

Definition 4 (α-lattice [1]). An α-lattice is a configuration
satisfying the set of constraints in

∥q j −qi∥= d, ∀ j ∈ Ni(t). (5)

In reference [8], the conception of virtual agents and a
classification were first proposed. Corresponding controls
can be given according to different kinds of agents. The
physical agent with dynamics q̈i = ui is called an α-agent.
The primary objective of α-agent in a flock is to form α-
lattice with its neighboring α-agents. In nature, α-agents
correspond to birds, bees, fish, and ants. Later, virtual agents
β -agents and γ-agents are also introduced, which model the
effect of ”obstacles” and ”collective objective” of a group,
respectively. γ-agent can be also called the virtual leader of
the system.

The distributed control given by Olfati-Saber [8] is de-
noted as uOS

i and shown in (6):

uOS
i = uα

i +uβ
i +uγ

i (6)

where the uα
i , uβ

i and uγ
i are the controls related to α-

agents, β -agents and γ-agents respectively. The stability of
the Olfati-Saber algorithm is proved in [8]. Extended from
its theoretical frame, a LSF control protocol is designed to
deal with the flocking in a limited space.

3 LSF CONTROL PROTOCOL
In this section we present the LSF control protocol in or-

der to enhance the safety-value and the average speed of sys-
tems in limited space. First of all, an index is needed to quan-
titively describe the safety status of the system. Therefore a
new conception called the safety-value should be proposed to
evaluate the saftey of agents and obstacles in a limited space.

3.1 Safety-value of system in limited space
When passing through a limited space, a multi-agent sys-

tem will get greatly compressed by the repulsive force from
the obstacles. To get efficient control, we introduce two kinds
of safety-values to quantify the safety status of an agent as
below.

Definition 5 (obstacle safety). The Obstacle safety So
k =

[so
k1,s

o
k2, . . . ,s

o
kN ] ∈ RN is a vector with each element varying

between 0 and 1, where N is the number of the agents and
so

ki < 1 denote the Obstacle safety between agent i and obsta-
cle k, where i,k are the indices of the agent and the obstacle,
respectively. The element so

ki can be calculated as follows:

so
ki = fthr(

∥q̂i,k −qi∥
Dβ

), (7)

where the q̂i,k is the location of the β -agent, ∥q̂i,k −qi∥ is the
real distance between agent i and its β -agent, Dβ is the set

distance between agent i and its β -agent.

fthr(x) =

{
x x < 1
1 x ≥ 1.

(8)

so
ki = 1 means that agent i is safe with obstacle k. so

ki =
0 means that agent i crashes the obstacle k. Analogously,
we can also define the Agent safety to quantify the safety
situation among agents:

Definition 6 (agent safety). The agent safety Sα = {sα
i j} ∈

RN×N is an array with each element varying between 0 and
1, sα

i j denote the agent safety between agent i and agent j and
can be calculated as follows:

Sα = {sα
i j}, sα

i j = fthr
(∥q j −qi∥

Dα

)
. (9)

Here we have to mention that because of the cohesive
force from the γ-agent (virtual leader), even in a free space,
the system would not form a strict α-lattice, which means
the distance between agents may shorter than Dα even when
a stable flocking behavior of the system is formed. So there
is an agent safety diminishment caused by the cohesive force
from the virtual leader (γ-agent) and the So

k will stabilize in a
matrix with elements slightly smaller than 1.

By using the defined and , we can design the LSF control
protocol of system in a limited space.

3.2 LSF algorithm in a limited space
Based on the Olfati-Saber model, we propose an algo-

rithm to improve safety-value and the average speed of a
multi-agent system in limited space. Noticed that when a
multi-agent system meets a limited space, its structure just
can be slightly changed by Olfati-Saber algorithm, accord-
ingly, the key point of the LSF algorithm is to add corre-
sponding control in order to automatically change the for-
mation to greatly enhance the safety-value and speed up the
system at the same time. When an agent i get dangerous with
obstacle k, namely so

ki < 1, we can introduce two kinds of
special α-agents to get more precise control.

Definition 7 (εk-agent). δk-agent is a virtual agent, and for
obstacle k, agent i of the multi-agent system is a ε-agent when
it satisfies:

1. so
ki < 1 and (so

ki)
′ > 0

2. There does not exist any j s.t. so
k j ≥ so

ki, ai j > λmin and
(p j · vγ)/∥vγ∥> (pi · vγ)/∥vγ∥

where (so
ki)

′ is the derivative of so
ki with respect to time.

Definition 8 (δk-agent). δk-agent is a virtual agent and for
obstacle k, agent i of the multi-agent system is a δk-agent
when it satisfies:

1. so
ki < 1

2. exists j s.t. so
k j ≥ so

ki, ai j > λmin and p j · vγ/∥vγ∥ >
pi · vγ/∥vγ∥
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Fig. 1. Flow chart of LSF algorithm 1

where λmin ∈R,0< λmin ≤ 1, vγ is the velocity of the γ-agent
(virtual leader).

The collection of j here is denoted by Nδ
k (i). Notice that

an agent can’t be εk-agent and δk-agent at the same time. We
present an algorithm to give control to these two kinds of
agents respectively. The flow chart of LSF algorithm 1 is
displayed in Fig. 1.

Algorithm 1:
It can be inferred from the definition of the εk-agent that

the εk-agents are on the forth front of the system and are
heading toward a safer place with an increasing obstacle
safety, which makes the effective control to simply be the
propulsion along with the same direction. The control uε

ki is
obtained in (10):

uε
ki = cε so

ki
pi

∥pi∥
(10)

where the cε is a constant coefficient for uε
ki. As to the δk-

agent, compared to the εk-agent, it functions like the follower
to the pioneer in the system. δk-agent always has agents with
higher obstacle safety before it. In order to maximum the
effect of changing the structure, enhance the obstacle safety,
and securely speed up the velocity, we propel the δk-agent to
a forefront safer neighboring agent. The specific process is to
find i′ ∈ Nδ

k (i), s.t for ∀ j ∈ Nδ
k (i), p j · vγ/∥vγ∥ ≤ pi′ · vγ∥vγ∥,

then the corresponding control uδ
ki is given in (11)

uδ
ki = cδ (1− so

ki)(qi′ −qi) (11)

where the cδ is a constant coefficient for uδ
ki.

After adding up the control with respect to the obstacles,
the result can be expressed in the formulation below:

uδ
i = ∑

k
uδ

ki, uε
i = ∑

k
uε

ki. (12)

The algorithm 1 works well in obstacle avoidance, how-
ever, the improvement of the obstacle safety is gained on a
little sacrifices of the agent safety, namely the agent safety
may drop a little. In order to reduce such sacrifices and make
a complement to algorithm 1, we use a complementary algo-
rithm to make some amendment.
Algorithm 2:

When the system is passing through a limited place, the
uθ

i can be added to the Algorithm and be gained as follows:

uθ
i = cθ ∑

j

a(i, j)∆sα
i, j

sα
i, j

(q j −qi)

∥q j −qi∥
, (13)

where ∆sα
i, j = sα

i, j(t)− sα
i, j(t −∆t) is the change of sα

i, j from
t −∆t to t, t is the temporary moment.

The function of uθ
i is like a buffer in the system, when re-

duction of the ,namely the ∆si, j is huge and the sα
i, j is low, the

uθ
i is fairly considerable. So by adding uθ

i , the reduction of
the agent safety can be greatly decreased and then the Algo-
rithm 2 can make complement to the Algorithm 1. In conclu-
sion, the LSF distributed control protocol can be given by the
following formula (14):

uLSF
i = uOS

i +uε
i +uθ

i (14)

where the uOS
i is the control of Olfati-Saber algorithm.

4 SIMULATION RESULT
In this section, we use some simulations to demonstrate

the effectiveness of our design method - LSF algorithm.
Without loss of generality, we can specify the limited space
into a channel, the number of the system N is 25, the width
of the channel is 8, and length is 20. The parameters for each
kind of agent are set as follows:

cα
1 = 1 , cα

2 = 1,
cγ

1 = 1 , cγ
2 = 1,

cβ
1 = 4.5 , cβ

2 = 5.8,
cδ = 6.55 , cθ = 7.7.

and cε = 100.215. To contrast the control performances be-
tween the LSF algorithm and the Olfati-Saver algorithm of
multi-agent systems in a limited space, three main qualities
of the process of proceeding though the channel are calcu-
lated to get further analysis of the two algorithms. so =
mink,i(so

ki) and sα = mini, j(sα
i j) can show the safety-value of

the system in a limited space, Vaverage is the average velocity
of all the agents of the system.

In figure 2 , the blue solid line represents the results of
Olfati-Saber algorithm, and the red dotted line represent the
results of LSF algorithm. Looking at the Fig. 2, we can see,
the LSF algorithm can accelerate the average speed, greatly
enhance the so and remain the sα .
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Fig. 2. Contrast figure between two algorithms about
so,sα ,Vaverage

It has been shown that, under the LSF flocking control
protocols, the stable flocking behaviors can be achieved and
the average speed of the system in a limited space is im-
proved. What’s more, the obstacle safety is greatly enhanced
and the agent safety basically stays the same. Study of sim-
ulation reveals that the LSF control algorithm can speed up
the system and improve its safety as the same time.

5 CONCLUSION
In this paper, we study the flocking control for multi-

agent systems in a limited space. A new coefficient called
the safety-value is introduced to describe the safety between
agents and obstacles, On the basis of the safety-value and
Olfati-Saber algorithm, a distributed flocking control proto-
col - LSF algorithm is designed to control the multi-agent
system in a limited space. By using local information of
each agent, the system can automatically and flexibly change
its velocity and structure in order to pass the limited space
both quickly and safely. Simulation reveals that the proposed
LSF control protocol can greatly improve the velocity of the
multi-agent system with even enhanced safety-value.
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