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Abstract: In this paper, the modeling and the robust decoupling control for a generic hypersonic scramjet vehicle are studied.
Firstly, the dynamics of the hypersonic vehicle are modeled by applying the Lagrangian approach, which captures the most
primary characteristics such as elastic deformation, aerodynamics, aero-heating, variable mass, effect of spherical rotating earth
and their inherent interactions. Then, a robust output decoupling controller is designed by using nonlinear dynamic inversion plus
the desired proportional integral dynamics, and natural time-scale separation theorem between fast and slow variables. Finally,
the nonlinear simulations demonstrate that the controller can eliminate the interaction among the output channels and satisfy the
handling quality requirements when the vehicle has parameter uncertainty.
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1 INTRODUCTION
With the historic scramjet-powered Mach 7 and 10 flights

of the X-43A in 2004, the research of hypersonic scramjet
vehicle (HSV) has seen a resurgence within the aerospace
community. This is attributed to the fact that the HSV is
viewed as the next critical flying vehicle, which has the abil-
ity to easily penetrate and survive against enemy air defenses,
promptly reach critical targets at long ranges (i.e., realize
rapid global response), and access to space in a manner simi-
lar to commercial air travel. Therefore, on one hand, this type
of vehicle has great potential as a high-speed, time-saving,
and low-cost transport for both commercial and military ap-
plications. On the other hand, the modeling and control of the
HSV are challenging, due to its severe aero-heating, uncon-
ventional propulsion system, much broader flight envelope,
and tight interaction among airframe, propulsion, and struc-
ture [1, 2].

The modern HSV like NASA X-43 or X-51 has special
slender airframe-propulsion lifting-body configuration and
operates over a high speed ranging from Mach 5 to Mach 15
within large flight envelope, so that the traditional design ap-
proaches are invalid when there exist the manifold interaction
among sub-models of the HSV and the complex flight envi-
ronment. For the modeling issue, several literature [3, 4, 5]
have discussed the determinants of the modeling and the in-
teraction of the sub-models. In [3, 4], the inertial dynam-
ics of the model were obtained under the consideration of
rigid-body motion, elastic deformation and spherical rotating
earth. And McNamara et al [5] focused on the coupling ef-
fects among the sub-models of aerodynamics, aero-elasticity
and aero-heating based on high fidelity codes. For the de-
coupling control issue, nonlinear dynamic inversion control
method was used in [6, 7] under the condition that the system

dynamics were exactly known. Moreover, the stability and
performance robustness within the dynamic inversion frame-
work were addressed in [8, 9, 10].

In this work, because of the high computational require-
ments when applying the precise sub-models of the HSV,
some dominating elements and their primary interactions are
extracted in the process of modeling. And then, by utiliz-
ing the Lagrangian approach, a control-oriented model of
the HSV is obtained, in which the effects of inertial dynam-
ics, elastic deformation, aerodynamics, aero-heating, vari-
able mass, and spherical rotating earth are captured. Based
on this model, a robust output decoupling controller is de-
signed to enhance the maneuverability of the HSV. Specifi-
cally, the dynamics of the vehicle are separated into two time
scales according to the natural time-scale separation theorem.
In each time-scale loop, an appropriate proportional integral
control law is designed in conjunction with the dynamic in-
version controller, such that the outputs of the closed-loop
system can be robustly decoupled at the steady state with re-
spect to the parameter uncertainty.

2 VEHICLE MODEL
According to [11], the dynamical equations of the HSV

are directly presented by using the Lagrangian approach.

mV̇ − S̃ω̇ +
∫

m
v̇dm =

(∫
m

ṽdm
)
·ω +mg+F +ΨF (1)

S̃V̇ + Jω̇ +
∫

m
r̃v̇dm =

(
2

∫
m

r̃ṽdm− ω̃J
)
·ω

−
(∫

m
ṽdm+ ω̃ S̃

)
·V + M̄ +ΨM̄

(2)
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[Λ]V̇ +[Λ]r̃T ω̇ +[Λ]v̇ = [Λ]Ṽ ω − [Λ]ω̃ω̃r

−
∫

m

(
φ

2
i ω̄

2
i ηi

)
dm+Qe +Ψe.

(3)
The expressions of external forces, moments, and thrust in

(1), (2), (3) are extremely complicated, which are determined
not only by the velocity and the attitude, but also by the shape
and elastic deformation of the HSV. In summary, there are
12 + 3n (n is the number of elastic modes) equations such
as: 3 force equations, 3 moment equations, 3n elastic defor-
mation equations, 3 trajectory equations, and 3 Euler angle
equations. Moreover, the kinematic equations of the HSV
are similar as the ones of the regular vehicle. For a vehicle
flying over a Mach number ranging from 5 to 15 and a height
ranging from 20 to 60km, the maximum and minimum mag-
nitudes of the Coriolis force mωE,I ×Vr are approximately
7.02% and 2.48% of the vehicle weight, and the magnitude
of the transport force mωE,I × (ωE,I ×R) is about 0.35% of
the vehicle weight. Finally, the scalar form of the HSV model
which is used here are presented in Appendix based on three
regular assumptions: i) neglecting the effect of elastic defor-
mation , ii) neglecting the transport item in expression of V̇ ,
iii) the vehicle is symmetrical about the oxBzB plane.

3 ROBUST DECOUPLING CONTROLLER
The structure of resulting control law is shown in Fig. 1.,

in which the nonlinear dynamic inversion theory is applied
in two time scales. Because the integral feedback has the
ability of eliminating steady-state errors, a desired dynamic
(i.e., proportional plus integral feedback dynamic) is applied
to solve the robustness problem of the dynamic inversion.

Fig. 1. Two-time scale feedback loop

3.1 Outer-loop Controller design
In the outer loop, the nominal dynamics of slow time scale

are placed in the form of (4). The objective of the dynamic
inversion in the slow time scale is to realize the decoupling
control of the attitude angles and flight trajectory using the
rotational rate and flight velocity. And the outputs are chosen
to be the system states.

ẋout = F̃0(xout)+ G̃0(xout) ·xin (4)

where xout = [φ θ ψ x y − h]T = yout , xin =
[ωx ωy ωz u v w]T . Roll angel φ , pitch angle θ , yaw angle
ψ are the attitude angels of the body axes relative to the earth
axes. x,y are flight displacement along the longitude lines

and latitude lines, respectively. h is the altitude of the vehi-
cle. ωx, ωy, ωz are rotational rates of the body axes relative
to the inertial axes. u, v, w are the velocities along the body
axes related to the earth axes. In practice, because of the pa-
rameter uncertainties, the real system is presented as

ẋout = F̃(xout)+ G̃(xout) ·xin (5)

where F̃(xout) = F̃0(xout)+ ∆F̃(xout), G̃(xout) = G̃0(xout)+
∆G̃(xout). And the specific expressions of F̃(xout), F̃0(xout),
G̃(xout), and G̃0(xout) can be obtained from the Euler angle
equations and the trajectory equations. Moreover, the pa-
rameter uncertainties in these expressions have the forms as
ωE = ω0

E +∆ωE , RE = R0
E +∆RE , and λ0 = λ 0

0 +∆λ0.
Since the total relative degree is equal to the number of

system states, this time scale has no internal dynamics to be
considered. Then, the outer-loop control law is given by (6),
where the desired dynamics is chosen to have the propor-
tional integral form.

xin = [G̃0(xout)]−1
{
−[F̃0(xout)]+vdes

}
vdes = kout 1 · (vout −xout)+kout 2 ·Ω
Ω̇ = vout −xout

(6)

where Ω = [Ωφ Ωθ Ωψ Ωx Ωy Ωh]T . kout i =
[kout φ i kout θ i kout ψi kout xi kout yi kout hi]T , i = 1,2 are the de-
sired controller parameters which will be determined. vout =
[vφ vθ vψ vx vy vh]T is the virtual input vector. By calcu-
lating the determinant of the control matrix det[G̃0(xout)],
it is concluded that [G̃0(xout)]−1 exists while the inequality
1/cosθ 6= 0 holds, and it is obviously satisfied.

Substituting the control law (6) into the real system (5),
the outer closed-loop system is obtained. Then, the objec-
tive is to find the appropriate controller parameters kout 1

and kout 2, so that the equation yout = [ I ]vout (i.e., xout =
[ I ]vout , where [ I ] is the identity matrix) is satisfied at the
steady state while the system contains parameter uncertain-
ties. Next, setting ẋout = Ω̇ = 0 yields the equilibrium so-
lutions of this system: xoute = vout , Ωe = [−∆ f̃1/kout φ2 −
∆ f̃2/kout θ2 −∆ f̃3/kout ψ2 0 0 0]T . Linearizing about xout =
xoute and Ω = Ωe yields the following linear systems: ∆ẋout =
[Ã]6×6 ·∆xout + [B̃]6×6 ·∆Ω, ∆Ω̇ = [C̃]6×6 ·∆xout + [D̃]6×6 ·
∆Ω. Then, the characteristic equation of such a linear system
is:

s12 + ñ11s11 + ñ10s10 + · · ·+ ñ1s1 + ñ0 = 0

where ñi = ñi(vout ,kout 1,kout 2,∆), i = 0, · · · ,11. Hence, the
stability of that linear system is guaranteed, if the eigenval-
ues of the characteristic equation are less than zero for all
allowable ∆F̃ and ∆G̃. Moreover, desirable stability margin
can be obtained for better dynamic performance by substitut-
ing a new variable s1 = s + a into the original characteristic
equation. Therefore, the linear system is stable and the eigen-
values are on the left side of the axis s =−a.
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3.2 Inner-loop Controller design
In the inner loop, the control surfaces and vectored thrust

are commanded to realize prompt and precise tracking of the
flight velocity and rotational angular velocity generated in
the outer loop. The most important point is that the slow
time scale states in the outer loop are treated as constants in
this fast time scale, since they evolve more slowly when com-
pared with fast time scale ones. The real system dynamics of
fast time scale are written as

ẋin = F(x)+G(x) ·u (7)

and F(x) = F0(x)+∆F(x), G(x) = G0(x)+∆G(x), xin =
[u v w ωx ωy ωz]T , u = [Φx Φy Φz δe δa δr]T . The sys-
tem states xin are the same as ones in the outer loop, and
x = [xT

in, xT
out ]. The three control surfaces deflection δe, δa,

δr are the effective elevator, aileron and rudder deflection.
Throttle setting values Φx, Φy, Φz are used to generate vec-
tored thrust. Besides, according to the force equations and
moment equations, the expressions of F(x), F0(x), G(x), and
G0(x) can be obtained. The parameter uncertainties exist not
only in ωE , RE , λ0, but also in vehicle mass, moment of in-
ertia, product of inertia, aerodynamic derivatives, and thrust
derivatives. Similarly, the desired dynamics of the fast time
scale also have proportional integral form, thus inner-loop
control law is written as{

u = [G0(x)]−1
{
−[F0(x)]+kin 1 · (xinr −xin)+kin 2 ·Ω

}
Ω̇ = xinr −xin

(8)
where Ω = [Ωu Ωv Ωw Ωωx Ωωy Ωωz ]

T . kin i =
[kin ui kin vi kin wi kin ωxi kin ωyi kin ωzi]T , i = 1,2 are the con-
troller parameters to be designed. Besides, matrix [G0(x)]−1

exists if the following inequalities holds. Ψ0
Fx Φx

(x) ·Ψ0
Fy Φy

(x) ·Ψ0
Fz Φz

(x) 6= 0

M̄0
y δe

(x)
[
M̄0

x δr
(x) · M̄0

z δa
(x)− M̄0

x δa
(x) · M̄0

z δr
(x)

]
6= 0

Consequently, substituting the controller (8) into the real
system (7) yields the inner closed-loop system. Next, get the
equilibrium solutions of this closed-loop system by setting
ẋin = Ω̇ = 0. Then linearizing about xin = xine = xinr and
Ω = Ωe could yield corresponding linear systems: ∆ẋin =
[A]6×6 ·∆xin +[B]6×6 ·∆Ω, ∆Ω̇ = [C]6×6 ·∆xin +[D]6×6 ·∆Ω.
For the linear system above with uncertainties in ∆F and ∆G,
the robust stability of that system is analogously achievable
through finding suitable controller parameters kin i(xinr), i =
1,2. Furthermore, the desirable stability margin can also be
obtained for better dynamic performance.

Remark1: The nonlinear dynamic inversion method is a
straight forward approach for designing decoupled feedback
systems of nonlinear systems. For the system with parameter
uncertainty, the robustness of output decoupling controller
can be addressed by using integral terms within the loops.

Remark2: The information of vout is required in the
processing of determining decoupling controller parameters
kout(vout). And this information can be easily obtained from
the commands.

Remark3: The linearized model of the nonlinear system
has been discussed here, which means that the states conver-
gency can only be achieved in a neighborhood of the equi-
librium. Fortunately, this problem can be solved by limiting
the change rate of the commands or enhancing the response
speed of the systems.

4 SIMULATION RESULTS
A typical nonlinear simulation of the maneuver is shown

to examine the effectiveness of the robust output decoupling
controller. The data of aerodynamic characteristics and thrust
performance in [12] is adopted here. The simulation results
of nonlinear system responses to the change of roll angel,
velocity and altitude are depicted in Fig. 2− 4, in which
the solid line is the response to v1 and the dash line is the
response to v2. It is observed that the change of one output
value has no effect on the steady-state values of the others.

Fig. 2. Responses to the change of roll angle

Fig. 3. Responses to the change of velocity

Fig. 4. Responses to the change of altitude
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5 CONCLUSION
In this paper, a multivariable nonlinear strong-coupled

HSV model has been developed, which captures the most
primary characteristics of this special vehicle. Based on
this model, a robust decoupling controller design method,
which incorporates a desired proportional integral dynamic
with nonlinear dynamic inversion controller, has been pro-
posed. This controller design method mainly addresses two
fundamental problems: decoupling of nonlinear system and
decoupling robustness. The nonlinear simulation results con-
firm that the vehicle model equipped with the robust output
decoupling controller can provide both steady-state decou-
pling of the outputs and robustness with respect to parameter
uncertainty.

6 APPENDIX
Force equations:

u̇ = [ωz +ωE(T31cλ −T33sλ )]v
−[ωy +ωE(T21cλ −T23sλ ]w+gT13 +(Fx +ΨFx)/m

v̇ = [ωx +ωE(T11cλ −T13sλ )]w
−[ωz +ωE(T31cλ −T33sλ )]u+gT23 +(Fy +ΨFy)/m

ẇ = [ωy +ωE(T21cλ −T23sλ )]u
−[ωx +ωE(T11cλ −T13sλ )]v+gT33 +(Fz +ΨFz)/m

Moment equations:

Jxxω̇x− Jxzω̇z = Jxzωxωy +(Jyy− Jzz)ωyωz + M̄x +ΨM̄x

Jyyω̇y = (Jzz− Jxx)ωxωz + Jxz(ω2
z −ω2

x )+ M̄y +ΨM̄y

Jzzω̇z− Jxzω̇x =−Jxzωyωz +(Jxx− Jyy)ωxωy + M̄z +ΨM̄z

Euler angle equations:

φ̇ = ωx +(ωzcφ +ωysφ)tθ − (cθcφ + sθcφ tθ)(v/R)
+(cθsφ + sθsφ tθ)(w/R)−ωE(cψsθ tθ + cψcθ)cλ

θ̇ = ωycφ −ωzsφ + cθ(u/R)+ sθsφ(v/R)+ sθcφ(w/R)
+ωEsψcλ

ψ̇ = (1/cθ)(ωzcφ +ωysφ)−ωE(cψtθcλ − sλ )
+sψcθ tλ (u/R)+ [(sψsθsφ + cψcφ)tλ − cφ tθ ](v/R)
+[(sψsθcφ − cψsφ)tλ + sφ tθ ](w/R)

Trajectory equations:

ẋ = T11u+T21v+T31w
ẏ = T12u+T22v+T32w
−ḣ = T13u+T23v+T33w

where R = RE +h, λ = λ0 + x/RE , s = sin, c = cos, t = tan,

[Ti j] =

 cψcθ sψcθ −sθ

cψsθsφ − sψcφ sψsθsφ + cψcφ cθsφ

cψsθcφ + sψsφ sψsθcφ − cψsφ cθcφ

 .

And u, v, w, ωx, ωy, ωz, φ , θ , ψ , x, y, h are the system states.
Input control variables are Φx, Φy, Φz, δe, δa, δr, which are
included in the expressions of the force, moment and thrust.
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