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Abstract: In this paper we propose a novel approach for the robust segmentation of room structure using Manhattan world

assumption. First, we estimate the Manhattan-like structure by using an MSAC variant that estimates such a Manhattan system

directly from the data. Once the orientation is estimated we extract hypotheses of the room structure by exploiting 2D histograms

using mean shift clustering techniques as rough estimate for a pre-segmentation of voxels i.e. their membership to planes of a

certain position and orientation. Additionally we use the concept of vanishing points to extract 2D cues from the 2.5D data to

improve the segmentation. We apply superpixel over segmentation on the colour input to achieve a dense segmentation. The over

segmentation and pre-segmented voxels are combined using graph-cuts for a not a-priori known number of final plane segments

with a label minimizing graph cut variant proposed by Delong et al. with polynomial runtime.
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1 INTRODUCTION

The estimation of semantic room structure, e.g. corridors,

doorways or walls, is a vital task for mapping or navigation.

With domestic robotics we face the problem of clutter

and visually weakly structured environments. The use of

2.5D sensors has become quite popular in the last decade,

for instance the use of tilting 3D laser scanners or the

Swissranger SR-3000. With the recent release of Microsoft’s

Kinect structured light sensor, the popularity of 2.5D sensors

gained a boost. The Kinect sensor is suitable for the task for

two reasons: The sensors are cheaper than laser scanners and

they offer an 2D colour image, which can be used for more

sophisticated feature extraction.

The challenge with data from 2.5D data is to cope with

noise and uncertainty due to the nature of the sensors. For

instance, the quality of 2.5D data from the Kinect depends

on the reflection properties of the observed surface or the

angle of incidence. Since the sensor uses structured light

in the infrared spectrum, the sensor is sensitive to sunlight.

Within the domestic robotics domain, the environments can

be single-coloured walls or furniture without texture, so

it can result in few certain and many uncertain estimates.

Another issue is that the sensor’s depth resolution does not

scale linearly with the Kinec.

Many approaches for room structure estimation use the

concept of occupancy grids [3] or extensions to 3D, e.g. [4]:

The grid contains information on a primitive level if a grid

cell corresponds to oder belongs to a wall or ground. At this

level, there is no information if certain parts of grid cells with

the label ”wall” are aligned to other ”walls” or if the ground

is parallel to other structures, e.g. a table top. This kind of

constraints is referred to in the computer vision literature as

the so-called Manhattan world assumption; The frequently

observed dominance of three mutually orthogonal vanishing

directions in man-made environments [5, 6, 7, 8]. Many

indoor environments can be considered as Manhattan-like

since most walls of a room are aligned orthogonally to the

ground or quasi Manhattan-like if the walls are not aligned

orthogonally to each other. In many cases, furniture is also

aligned Manhattan-like to its environment, e.g. a couch or

cupboard can be aligned to a wall. Here we emphasize that

it is not necessary that the furniture is aligned to all three

major axes i.e. even if a table is not aligned to a wall its table

surface is usually parallel to the ground.

The novelty of the paper is the use of 2D and 3D features in

a unified framework at almost the same runtime as the pre-

vious approach in polynomial runtime unlike than common

NP hard solutions. The extraction of 2D cues is done in linear

runtime and improves the overall precision of the segmenta-

tion and also improves the robustness to false matches.

2 OUR APPROACH
The main idea of our approach is to use histograms to extract

room structure hypotheses for MRF segmentation rather than

using the depth data as voxels. One advantage of using his-

tograms is that it is relatively easy to estimate the Manhattan-

like structure within the data if the camera origination is

known. One disadvantage is that we lose spatial information

about the voxels i.e. post-processing is needed to generate

hypotheses on the room structure on all three axes i.e. planes

aligned to the X, Y and Z axes. The hypotheses are finally
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evaluated using the 2.5D data in the fashion of RANSAC and

pre-segmentation using over segmentation techniques in the

source 2D image. In an additional step we extract 2D cues

from the 2.5D data using the concept of vanishing points. We

use the 2D cues in two ways: Depending on the structure in

the image it can be sometime easier to describe which part of

an image does not belong to a specific Manhattan like struc-

ture than sometimes the opposite (at two different stages in

the segmentation). We The final segmentation is achieved

using an MRF multi-label technique which provides a robust

and precise framework for 2D and 3D fusion.

2.1 Estimating Manhattan Geometry
First we estimate the Manhattan System form the 2.5d

data with a method that has been proposed by us in [9]. It

is based on the idea to RANSAC a valid Manhattan system

on the base of normal vectors. The method estimates the

relative roll, pitch and yaw to the scene. The method also

provides a plane segmentation of Manhattan-like structure,

based on a 1D âĂŸâĂŹConnected Components” RANSAC

that pre-segments all planes that are orientated to the Man-

hattan systems i.e. orientated to the X, Y or Z axis. For the

sake of simplification, we assume only one system per scene.

2.2 Extracting 2D cues
The basic idea of our approach is to estimate per pixel the

probability of the alignment (orientation of the pixel) to the

one of the three vanishing points. Instead of using line seg-

ments we use straightforward gradients (i.e. orientation and

magnitude). In the fashion of the Canny edge detector, we

first blur the image using a Gaussian 3x3 kernel and apply

a 3x3 Sobel filter on the image to obtain a gradient image.

In a next step we calculate the reference orientation of each

pixel to its three vanishing points as shown in figure 1 for two

pixels. One can see that reference orientation of two vanish-

ing points can be quite similar to each other, e.g. the sample

point on the right bottom. In order to avoid artefacts in the

estimation step, we calculate the similarity reference angles

(a) 2D Image with projected vanish-

ing points

(b) Colour coded alignments of

gradients/pixels to vanishing points

Figure 1: Basic concept of vanishing points in 2D images.

The vanishing points are colour coded for better visibility i.e.

red=x, green=y and blue=z

in a 3x3 matrix and use it as a additional gain in the estima-

tion step. The estimation per gradient pixel to a vanishing

point is a simple winner-takes-it-all method based (fig. 1(b))

on the smallest angle to a reference angle (of the vanishing

point) i.e. we assume that every pixel is aligned only to one

vanishing point. Finally we convert the value of the smallest

angle into a probability by using a Gaussian weighting in a

way that 5 degree difference will result in 3 σ.

2.3 Pre-Segmentation
Next, we use the plane hypothesis to pre-segment the

individual voxels i.e. assign the voxels to planes and their

orientation. This segmentation is done straightforward by

re-projecting all hypotheses back into the 3D state space of

the voxels. A voxel is assigned to a plane hypothesis if it in-

tersects the plane hypothesis within a certain threshold. Each

voxel is assigned only to one (or none, i.e. ”undecided”)

”best fitting” plane using the distance of the plane/voxel

intersection to the mean of the voxels as the metric for

matching. We count the number of inliers per plane similar

to RANSAC. Planes with almost no support count < 0.05%

are then removed from the set and corresponding voxels are

freed.

In order to achieve a dense segmentation of the entire image

we over segment the colour image using superpixels. The

use of superpixels for over segmentation is quite popular in

the computer vision literature within the last decade. The

main objective is to locally merge pixels into ”superpixels”

i.e. pixels with similar e.g. colour, texture, appearance or

shading. In general we assume that true object boundaries are

mostly (but not necessarily) represented by boundaries of the

superpixels if the objects size is large enough (e.g. > 5 pixel).

In this paper, we use the fast Minimum Spanning Tree based

method by Felzenszwalb [10], giving us (by appropriate set-

ting of parameters) 300-500 regions on average. However,

any other over-segmentation method can be used.

2.4 MRF based multi-labeling
To label the pixels on a global level, i.e. to take into account

prior information about possible plane orientations, 2D

geometry and relations between neighbouring superpixels

simultaneously, we formulate the problem in a fully prob-

abilistic framework; as searching for a maximum posterior

(MAP) configuration of the Markov Random Field [11] for

multi-labeling [12]: In a labeling problem we are given a set

of observations P (e.g. voxel and superpixel) and a set of

labels L (e.g plane/orientation hypotheses). The goal is to

assign each observation p ∈ P a label fp ∈ L such that the

joint labeling f minimizes the objective label function E( f ).

We assume a graph G = 〈P,E〉 consisting of a discrete set P
of objects and a set E ⊆

(|P|
2

)
of pairs of those objects.
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An instance of the Max-sum problem is denoted by the tuple

(G,L), where the elements Dp( fp), Vpq( fp, fq) and hL̇δL( f )

of g are of alignment costs or qualities. The quality of a

labeling f is defined

E( f ) =

data cost︷������︸︸������︷∑
p∈P

Dp( fp)+

smooth cost︷�������������︸︸�������������︷∑
pq∈N

Vpq( fp, fq)+

label cost︷��������︸︸��������︷∑
L⊆L

hL̇δL( f )

where hl is the non-negative label cost of label l, and δL( f )

is the corresponding indicator function

δL( f ) =

⎧⎪⎪⎨⎪⎪⎩
1, if ∃p : fp = l

0, else

A common approach in the computer vision literature is to

use three labels [5] for every major axis instead of using mul-

tiple labels per major axis. One reason to do so is that the

general labeling for more than 3 labels leads often to NP-hard

solutions [11, 12]. In this paper we use an MRF multi-label

approach proposed by Delong et al. [12] which solves the

multi-label problem within polynomial runtime for arbitrary

number of labels. The polynomial runtime is achieved by us-

ing a different strategy for the multi-labeling than common

approaches e.g. using a fixed number of labels: The main

idea is to use the MRF to reduce the number of labels by

merging them using the E( f ) function. The strategy includes

starting with a reasonable number of labels e.g. all plane hy-

potheses and use the smoothness term as metric.

2.4.1 Graph entities

We build the graph G on the over-segmented image i.e. on

the superpixels. The use of superpixels significantly reduces

the number of objects in the graph compared to building the

graph directly on the pixel grid. The superpixels represent

objects (the set P in the graph and edges). The set E, is es-

tablished between every two neighbouring superpixels. The

number of nodes (labels) K is set to the number of observed

planes and four ”undecided” labels to mark ambiguous la-

bel assignments. The ”undecided” allow the solver to mark

the places where there is not enough, information to decide

which plane the superpixel belongs to. The individual ”unde-

cided” labels are ”notxy”, ”notxz”, ”notyz” and ”undecided”.

The main idea with ”not” labels is that it is sometime eas-

ier to estimate where a plane orientation does not belong to

than the opposite. The problem is that we have only sparse

information at the scale of superpixel labels to determine the

actual orientation of a label with a high certainty, like the

typical scale space problem in computer vision. One can see

that the estimation of the opposite is easier if we use a ”higher

scale”. The ”not” labels are estimated using the 2D cues in

the ”low scale” version and with the ”label cost” as the ”high

scale” i.e. estimating the orientation of a set of labels.

We use an additional parameter to represent weights of edges

that connect the superpixels. The calculation of superpixel

likelihood is done using simple colour (RGB) histograms and

using the Bhattacharyya [13] metric:

ρ[p,q] =

m∑
u=1

√
puqu

with
∑m

u=1 pu = 1 and
∑m

u=1 qu = 1 for u histogram bins of

the superpixels p and q. Note that this implementation dif-

fers from many other MRF based label methods where the

smoothness term is used to describe the likelihood of the

neighbouring superpixels instead of using weights in the

graph. With Delong et al. [12] approach the smoothness

term describes the similarity between individual labels.

2.4.2 Smoothness term

The term Vpq( fp, fq) describes the smoothness between two

labels p,q i.e. the cost to assign q to p. The function itself

must be injective i.e. Vpq( fp, fq) � Vqp( fq, fp) which is nec-

essary for our MRF variant by Delong et al. [12]. In our

implementation we set cost function Vpq that a label q from a

plane hypothesis is set to p of an another hypothesis, if both

planes are assigned to the same orientation and they have al-

most the same position |pq| (e.g. if the plane is y aligned, its

the height) and if p has less support by voxels of the plane

hypothesis, i.e. inliers, than q:

Vpq( fp, fq)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if p = q

1, if porientation � qorientation

costpq ·Δpq ·qinliers, if porientation = qorientation

costknown, if p = ”undecided”

costunknown, if q = ”undecided”

with costpq� costunknown > costknown � 1. We use the dis-

tance of the plane position of the corresponding labels p,q as

weight metric i.e.

Δpq =

⎧⎪⎪⎨⎪⎪⎩
2.0− |pq|

c if |pq| ≤ c

0 otherwise

for a threshold c. We use costknown � 1 since we want to al-

low the MRF to remove false positives from the graph, i.e.

false labeled x-axis oriented planes surrounded by z-axis ori-

ented planes. The condition porientation = qorientation can com-

bine labels with the same properties while the graph based

representation ensures that this is only applied if the source

superpixels are ”close” to each other in the source image.

2.4.3 Data term

The data term Dp( fp) encodes the quality of assigning a label

f from the set L to an object/superpixel p in the graph. The

quality measures how the superpixel is oriented to a specific

plane. We use the pre-segmented labels of the voxels/pixel,

i.e. the source pixels within the superpixels p. The data term
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for the ”not” labels is given by the 2D cues. For each fp

we sum up the assigned (to vanishing points) gradient val-

ues (see figure 1(b)) to the corresponding labels i.e. ”notxy”,

”notxz” and ”notyz”. The idea is simple, if a gradient pixel is

assigned to the z axis, it votes with its gradient value for the

”notxy” label. If the gradient is assigned to the x axis it votes

for the ”notyz” label and y axis votes for the ”notxz” label.

The overall assumption is that if a segment is assigned to a

certain orientation, then it does to contain gradient pixels that

are assigned to that axis, see figure 1. We normalize ”notxy”,

”notxz” and ”notyz” with the total sum of the raw unassigned

gradients within fp. This avoids that false or few matches

outvote the ”assignment labels” e.g. within textured areas.

The data term for the ”assignment labels” is given as follows:

For each fp we count the number of voxels/pixels with the

same label as f from the pre-segmentation. Note that the la-

bels f corresponds to the plane hypothesis. Next the number

of pixels pn is normalized to pm and set as cost to Dp( fp)

Dp( fp) =

⎧⎪⎪⎨⎪⎪⎩
W(pm) · costdata, if W(pm) ≥ λ∧W(pn) ≥ γ
0, otherwise

With costdata� costpq and

W(p) =

⎧⎪⎪⎨⎪⎪⎩
p · costdata, if fp is ”undecided”

p, otherwise

where λ and γ are thresholds and costdata is a normalizing

constant that can prevent false positives if costdata > 1. In our

implementation we use λ = 0.1 and γ = 10 since we set the

”minimum superpixel size” Felzenszwalbs [10] superpixels

segmentation to 100 pixels. In our experiments costdata = 1.5

which produces fewer, but more certain labels.

2.4.4 Label cost

The label cost term hL̇δL( f ) is used to penalize each unique

label that appears in f within E( f ). We use the cost hL to

express the certainty of the label f i.e. a lower cost reflects

a higher certainty. Since we use the MRF to minimise the

number of labels by fusing labels (=adding the costs of the

fused labels), a solution will be used with minimal overall

cost. We use the 2D cues to obtain hL in a similar way we

used it for the ”not” labels, but using ratios instead of sums.

For instance if a label is assigned to the x axis hL is given as

hL =
sumx

sumy+ sumz+μ

where sum is a function that sums all gradient pixels that are

assigned to the corresponding axis and μ the smallest not-

zero value that is assumable. The ratio for labels with y or

z orientation calculates analog. Please note that we do not

use the δL( f ) as it was meant to be used in the first place as

we distinguish only between three orientations of a plane and

”unkown” labels with our 2D cues instead of the individual

labels.

3 EXPERIMENTAL RESULTS
We choose a typical home environment (see fig. 2) for

data acquisition using the Kinect. The data of all sensors is

recorded at 25 frames per second. We recorded a represen-

tative set of six tours through our lab with a total length of

approximately 320 meters. Three tours have a Manhattan

like environment while the other ones represent a quasi

Manhattan like environment.

Figure 2 shows sample images for all three tours and their

segmentation in comparison with state of the art techniques

from Saxena et al. [1] and Saxena et al. [1]. One can see

that the combination of MRF and superpixels produces

quite precise segmentation if stereo data is available and the

superpixels do not contain glossy spots or other overexposed

areas. In some case false-matches can appear if a glossy

spot on the ground and the wall are to close too each other.

The images also show that our parameterization of the

segmentation is quite conservative since we want to produce

only few false positives.

Our code runs on 2.4 GHz QuadCore PC, while the code is

not optimized and uses only one CPU (except for MSAC

Manhattan Geometry estimation). The average runtime for

one frame is 408ms the clear bottleneck is the superpixel

segmentation with 280ms. The next expensive function is

the calculation of the Manhattan Geometry (80ms) due to the

usage of histograms. Using smaller histograms will result in

a lower constant runtime, but will also influence the accuracy

negatively. The extraction of 2D cues the thrid third bottle-

neck with a constant runtime of 20ms followed by the mean

shift clustering with 10ms.

4 CONCULSION
In this paper we presented a novel robust method for room

structure segmentation in a Manhattan like environment

for 2.5D data using 3D and 2D cues. Once the camera

(a) our approach (b) Saxena et al. [1] (c) Hoiem et al. [2]

Figure 2: Segmented sample pictures from our test data: The

colour indicates the alignment of a structure to an specific

axis. The segmentation is executed on the identical superpix-

els on all three methods. Please note that the different ap-

proaches are using different color coding for the axis, yellow

indicates uncertian planes in [1, 2].
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orientation is estimated using MSAC, we calculate the

assignment of every voxel to the 3 major axes and we extract

plane candidates using histogram voting that are used as

priors for a MRF based segmentation. We extract 2D cues

from the 2.5D data using the concept of vanishing points and

2D image geometry. We also showed that the segemntion of

the MRF can be improved using label cost metric and 2D

cues.

The main drawback of our approach is that we depend on

Manhattan-like structures which is common with many

indoor environments. The extraction of 2D cues depends

on the proper estimation of the camera orientation, however

this could be overcome by estimating the vanishing points

separately like in pure 2D computer vision approaches.

Another drawback is that we depend on the output of the

superpixel segmentation. Experiments have shown that the

use of smaller superpixels is more robust than the usage of

large ones, i.e. otherwise the superpixel segmentation tends

to group the ground and white walls to one segment. At

this stage we do not use multiscale oversegmentation, which

would improve the performance of the 2D cues. Right now

we kind of abuse the MRF as quasi multiscale by using the

”not” labels in a small scale and using it with the label costs

in a large scale.

Our next step is to extend the approach with multi-scale over

segmentation and to incorporate the 2D cues in the smooth-

ness term of the MRF.
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