
A describing method of latency tolerant hardware for a pure ANSI-C/C++

based high-level synthesis technology

 Akira Yamawaki
1
 and Seiichi Serikawa

1

1
Kyushu Institute of Technology, Japan

(Tel: 81-93-884-3255, Fax: 81-93-884-3214)

1
yama@ecs.kyutech.ac.jp

Abstract: The image processing is important for the robotics and its hardware implementation is required in order to realize a

small and low-power device with the appropriate performance where the high performance computer cannot be used due to the

cost, size and power limitation. To reduce the burden of such hardware development, the high-level synthesis (HLS)

technologies that automatically convert the algorithmic description to hardware have been proposed and developed. The

combination of the memory latency hiding and data process pipelining is very important to extract the hardware performance

maximally. However, nobody shows clearly how to describe the hardware behavior to generate such hardware. This paper

shows a generic describing method for HLS technology based on ANSI-C/C++ that can realize the combination of the memory

latency hiding and data process pipelining. The experimental results show that our method can be applied easily to the intuitive

C program. The logic simulation and an FPGA implementation reveal the effects to the performance improvement and the

hardware increase induced by our method.

Keywords: high-level synthesis, latency hiding, pipelining, hardware, image processing.

1 INTRODUCTION

The image processing, e.g. the object tracking, the

object recognition, and so on, is important for the robotics.

Hardware implementation of the image processing is

required in order to realize a small and low-power device

with the appropriate performance where the high

performance computer cannot be used due to the cost, size

and power limitation.

However, the hardware is developed by an expert using

hardware description language (HDL), spending a

significant burden. At last the large development load can

realize the image processing hardware optimized to

performance and power consumption.

To reduce such burden of hardware development, the

high-level synthesis (HLS) technologies that automatically

convert the algorithmic description to HDL program have

been proposed and developed [1-5]. Most HLS tools

employ the C language as the design entry. However, the

design entries are C-like language, which is not pure ANSI-

C/C++. Also, some HSL tools provide their own grammar

suiting to represent the hardware nature. That is, the

developers have to learn the dedicated C-like language

although they need not to learn HDL.

In contrast, some HLS tools supporting ANSI-C/C++ as

a design entry are provided recently [6], [7]. Instead of C-

like language that describes parallelism and clock boundary

of the hardware explicitly, the HLS tools supporting ANSI-

C/C++ automatically extract them from the sequence of

statements and loops in a pure C/C++ program.

Actually, the parallelism however cannot be extracted

enough. So, the developer must indicate parallelism by

pragmas explicitly. Typical and simple examples showing

how to insert pragmas are shown by the venders of the HLS

tool. But, some describing methods which are expected to

generate a sophisticated hardware to improve the hardware

performance are not shown mostly. For example, it is to

combine the memory latency hiding and data process

pipelining. This combination is very important to pull the

performance of the hardware maximally.

Using an HLS tool (Vivado HLS of Xilinx [6])

supporting pure ANSI-C/C++, this paper shows a generic

describing method of ANSI-C/C++ program that can realize

the combination of the memory latency hiding and the data

process pipelining. In this method, the memory loading part,

the data processing part and the memory storing part are

described isolated by FIFO passing the stream data. While

the memory loading part and the memory storing part

transfer the data to the memory, the data processing part

processes the stream data via FIFO simultaneously. Thus,

the memory access is overlapped with the data processing

efficiently and naturally.

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 387

In a case study to 3x3 image filter, we show that our

method can be applied easily to the intuitive C program. In

addition, through the logic simulation and implementation

to an FPGA, we confirm the effects to the performance

improvement and hardware increase induced by our method.

The rest of the paper is organized as follows. Section 2

shows a hardware model to which we map C program.

Section 3 intuitively designs the hardware description in C

to 3x3 image filter. Section 4 extends the intuitive C

program mentioned above to combine the memory latency

hiding and data process pipelining by our method. Section 5

evaluates the hardware overhead and the performance

improvement induced by our method, compared with the

intuitive C program. Finally, Section 6 concludes the paper.

2 HARDWARE MODEL

Fig. 1 shows a hardware model to which we map C

program. The organization of this model is commonly used.

Thus, any hardware designer can accept to employ this

model.

This model is decomposed to the memory loading part,

the data processing part and the memory storing part. These

parts are separated by FIFOs. They run completely in

parallel, communicating via FIFO streamly each other.

The memory loading part loads the data to be processed

in a memory into the input FIFO. The data processing part

gets the input data from the input FIFO, processes the input

data and pushes the processed data into the output FIFO.

The memory storing part pops the processed data from the

output FIFO and stores them into the memory.

The data processing part processes the stream data

through its own pipelined data path, while the memory

loading and storing parts perform the memory accesses.

Thus, the memory latency is hidden by the pipelined data

processing.

This model is trivial but nobody has explained clearly

how to write to generate such hardware. That is, since a

generic describing method does not exist, the designer has

to write the hardware behavior in C carefully by its own

talent so that the hardware model as shown in Fig. 1 is

generated.

3 INTUITIVE METHOD

To confirm that our method can be applied easily to the

intuitive C program, we describe the case study of 3x3

image filter in this section. Fig. 2 depicts the data

processing image of 3x3 image filter and Fig. 3 describes

an intuitive C program of the hardware behavior.

For the input image, a column is loaded into the top of

the internal ring buffer along the image height as the lines

of 11 to 12 in Fig. 3.

To the buffer holding columns, a 3x3 image filter is

performed as the lines of 14 to 18 in Fig. 3. 3 pixels in the 3

Fig. 1. Hardware model

Fig. 2. Image of Data process

Fig. 3. Intuitive C program

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 388

rows currently indexed in the buffer are pushed into the 3x3

window. Then, an image filter processes this 3x3 window.

The result of the image filter is stored into the memory as

the line of 19 in Fig. 3.

Once the 3x3 image filter finishes on the buffer, the

indexes to banks of the buffer are updated to load a next

column to new top entry as the lines of 21 to 22 in Fig. 3.

Inserting pragma, the pipeline structure can be extracted

by an HLS tool, Vivado HLS 14.3 [6]. For example, the

inner loops of the line 11 and the line 13 are converted to

the pipeline hardware. However, the parallel feature among

the memory access and data processing cannot be extracted

by any pragma. Although we cannot analyze the internal

processes of the Vivado HLS in detail, the data dependency

over some arrays may be a reason to obstruct the

parallelization. That is, the C program must be

reconstructed to extract the parallelism between the

memory access and data process.

4 PROPOSED METHOD

Our proposed method is very simple and easy way to

reconstruct the intuitive C program. Fig. 4 shows the C

program of which the intuitive C program shown in Fig. 3

is reconstructed by our method.

The program basically consists of 3 functions which are

the memory loading (mem_load), the data processing

(data_proc) and the memory storing (mem_store). These

functions are connected by the FIFOs. This structure is

equal to that of Fig. 1.

Each function runs individually from the top to the

bottom of the image. To make them run in parallel, the

DATAFLOW pragma [6] is assigned to the function Top in

order to extract the parallelism among the functions. In

addition, the data dependency among the functions has to

be cut. Thus, the streaming FIFOs, iFIFO and oFIFO which

are bridges among the functions are defined in the function

Top.

The mem_load pushes the pixel in the memory into the

iFIFO until the iFIFO becomes full.

Simultaneously, the data_proc pops the iFIFO and

stores the popped data into the top of the ring buffer while

the iFIFO is not empty. Once the top of the ring buffer

becomes full, the data_proc performs 3x3 image filter as

same as Fig. 3. However, the processed data is pushed into

the oFIFO instead of the memory. The pipelining is also

performed to the inner loops of the same as Fig. 3 by the

PIPELINE pragma [6].

In addition, the mem_store pops the oFIFO and stores

the popped data into the memory in parallel.

Using our method, the memory loading and storing

parts are accessing the memory while the data processing

part is processing the data fast by the pipelining. That is,

our method can naturally express the hardware which hides

the memory latency to extract the performance of the

pipelined hardware maximally.

5 EXPERIMENT AND DISCUSSION

5.1 Performance evaluation

To evaluate the performance of the hardware to which

Vivado HLS 14.3 converts the C program, we have

Fig. 4. C program reconstructed by our me

thod

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 389

performed the logic simulation on the Modelsim 10.1c of

Mentor Graphics. We set the clock frequency to 100MHz.

Fig. 5 shows the experimental results. The ORG of the

horizontal axis means the intuitive version shown in Fig. 3.

Also, the PAR indicates the version that is modified by our

method shown in Fig. 4. The values on our method mean

the depth of the input and output FIFOs. The vertical axis

indicates the normalized execution time to the intuitive

version. The data are measured over several resolutions of

the input image. The filter was the average filter.

The result shows that our method can improve the

performance compared with the intuitive version by the

combination of the memory latency hiding and the data

process pipelining. The depth of FIFO affects the

performance improvement due to our method. The deeper,

the better. However, the speedup is saturated by about 1.5

times. That is, the optimum depth exists to improve the

performance maximally, suppressing the hardware cost.

5.2 Hardware Overhead

To improve the performance maximally while

suppressing the hardware cost, the optimum point of the

FIFO depth exists as mentioned above. Thus, we confirm

that the hardware cost at the boundary point of the FIFO

depth is compensated by the performance improvement

compared with the hardware size of the intuitive version. To

do this, we have implemented the hardware into an FPGA,

Spartan-6 of Xilinx. The used implementation tool is ISE

14.3. Table. 1 shows the result of this evaluation.

FIFO means the depth of the i/o FIFOs. The LUT means

the number of lockup tables realizing the combinational

logic. The FF means the number of flip-flops. The BRAM

means the number of embedded memories in the FPGA.

The result shows that the investment of hardware

resources increased by our method is appropriate enough

for the performance improvement of 1.5 times.

6 CONCLUSION

We have proposed a generic describing method of a

latency tolerant hardware for a pure ANSI-C/C++ based

high-level synthesis technology. Through the case study

that uses 3x3 image filter, we have shown that our method

can be introduced easily into the intuitive C program. Also,

it has been confirmed that the performance improvement

can be achieved by the moderate hardware investment.

As future work, we will evaluate our method to more

application programs and apply it to more HLS tools.

REFERENCES

[1] Mitrionics (2008), Mitrion User’s Guide 1.5.0-001,

Mitrionics.

[2] Pellerin D and Thibault S (2005), Practical FPGA

Programming in C, Prentice Hall.

[3] Lau D, Pritchard O and Molson P (2006) Automated

Generation of Hardware Accelerators with Direct Memory

Access from ANSI/ISO Standard C Functions, IEEE Symp.

on Field Programmable Custom Computing Machines,

pp.45-56.

[4] Mentor Graphics (2012), Handel-C Synthesis

Methodology, http://www.mentor.com/products/fpga/han-

del-c/

 [5] Yamawaki A and Masahiko I (2011) High-level

Synthesis Method Using Semi-programmable Hardware for

C program with Memory Access, Engineering Letters,

Vol.19, Issue 1, pp.50-56.

 [6] Xilinx (2012) Vivado Design Suite User Guide High-

Level Synthesis, Xilinx user guide, UG902 (v2012.2).

 [7] Calypto (2012) Designing High Performance DSP

Hardware Using Catapult C Synthesis and the Altera

Accelerated Libraries, Calypto White Paper, WP-0004 05-

2012, http://calypto.com.

Fig. 5. Performance evaluation

Table 1. Hardware cost

The Eighteenth International Symposium on Artificial Life and Robotics 2013 (AROB 18th ’13),
Daejeon Convention Center, Daejeon, Korea, January 30-February 1, 2013

© ISAROB 2013 390

