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Abstract: In this paper, a sliding mode controller (SMC) based on a nonlinear sliding surface (NSS) is designed for controlling 

a quad rotor helicopter (quadrocopter). It is a well-known that a low overshoot can be achieved with a cost of longer settling 

time, although a shorter settling time is needed for quick response in a quadrocopter system. In the conventional SMC, the 

sliding surface is designed as a linear surface that provides a constant damping ratio. The value of damping ratio should be 

adjusted in order to obtain an optimal performance by making a tradeoff between the two criteria; overshoot and settling time. 

In this paper, an NSS is designed so that the damping ratio of the control system can be varied from its initial low value to a 

final high value in a finite time. A low value of damping ratio will cause a quick response, and the later high damping ratio will 

avoid overshoot, and therefore the control performance can be optimized. First, a dynamics model of a quadrocopter is 

presented. Next, an SMC with an NSS is designed for tracking control of a quadrocopter. The stability of the proposed control 

system is proved based on the Lyapunov stability theory. The effectiveness of the proposed design is verified by simulation in 

which comparative results with the conventional linear sliding surface (LSS) is shown. The NSS is more effective compared to 

the conventional LSS when the disturbances exist. 
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1 INTRODUCTION 

Quadrocopter is a class of vertical takeoff landing 

unmanned aerial vehicle that uses two pairs of contra-

rotating rotors to provide lift and directional motion. 

Quadrocopter has some advantages compared to 

conventional helicopter due to its compactness and simple 

mechanical structure with high maneuverability. The 

maneuver is provided by just varying the motors’ speed. In 

order to make the quadrocopter fully autonomous and 

robustly stable to disturbances are still challenging 

problems because of its high nonlinearity.  

Nonlinear control strategies of a quadrocopter have 

been concerned by many researchers. Mokhtari et al. 

designed a feedback linearization controller combined with 

an observer to reduce sensors [1]. They applied feedback 

linearization to control a partial dynamic system based on 

rotational motion and an observer to construct translational 

motion information. Guisser et al. proposed an input-output 

feedback linearization algorithm for stabilizing a 

quadrocopter and tracking a given trajectory in discrete 

time [2]. Mian and W. Daobo employed feedback 

linearization coupled with a PD controller to control 

translation motion and a backstepping-based PID nonlinear 

controller for rotational motion [3].  

Saturation nonlinearity is also concerned by some 

researchers. Kendoul et al. and Castilo et al. proposed a 

nested saturation strategy for stabilizing a quadrocopter 

[4][5]. A nested saturation approach was designed based on 

a priori input bounds of a quadrocopter [6]. This control 

strategy was designed for stabilizing the attitude of a 

quadrocopter. Cruz et al. used a nested saturation strategy 

for stabilizing the quadrocopter in a given trajectory [7].  

In a real application, a control system of a quadrocopter 

must be robust to uncertain disturbance such as wind 

gusting. The SMC is well known as a robust control 

strategy, and has been applied to a quadrocopter. Yokoyama 

et al. designed a velocity tracking control by using an SMC 

together with a backstepping method [8]. The robustness of 

the controller was proved by simulation under a gust of 

wind. Problems of unmatched disturbance and chattering 

have been concerned in developing an SMC. Vega et al. 

designed a robust SMC by designing a disturbance 

estimator [9]. They used a first-order differentiator called a 

super-twisting algorithm for estimating aerodynamic forces.  

As a high speed dynamic system in an uncertain 

environment, a good control strategy of quadrocopter 

should be designed to settle its body quickly without any 

overshoot or oscillation under a disturbance. It is well 

known that a low overshoot can be achieved with a cost of 

longer settling time, although a shorter settling time is 

needed for quick response. Hence, the value of damping 

ratio should be adjusted in order to obtain an optimal 

performance by making a tradeoff between the two criteria; 

overshoot and settling time. In this paper, an NSS is 

designed so that the damping ratio will be changed from its 
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initial low value to a final high value at a finite time. This 

NSS is designed based on the algorithm presented in [10]. 

An SMC with an NSS is employed for stable tracking 

control of a quadrocopter. The performance and robustness 

of the proposed controller is proved by simulation. A 

comparison with a conventional SMC is presented. 

 

2 MODELING OF QUADCOPTER 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Coordinate frame of quadrocopter 

 

The position of a quadrocopter, 𝑋0 = [𝑥, 𝑦, 𝑧]𝑇 , is a 

coordinate position of the centre of gravity of the 

quadrocopter (“B”) with respect to the earth frame (“O”)  

as shown in Fig. 1. Its attitude is represented by three 

angles, 𝛩 = [𝜙, 𝜃, 𝜓]𝑇  , which are roll, pitch and yaw, 

respectively. The coordinate position and attitude of the 

quadrocopter are described in the earth frame, although 

they are measured in the body frame by using sensors 

attached to the body of the quadrocopter. Denoting the 

linear and angular velocities in the earth frame by 

�̇�0 ∈ ℝ3 and �̇� ∈ ℝ3, respectively, and those in the body 

frame by 𝑉 ∈ ℝ3 and 𝜔 ∈ ℝ3, respectively, we have the 

following relation: 

 

           �̇�0 =  𝑉  (1) 

            �̇� = 𝜔      (2) 

                     

 = [

  𝜙 𝜃 𝜓   𝜃 𝜓   𝜙 𝜓  𝜙 𝜃 𝜓   𝜃 𝜓
 𝜙 𝜃 𝜓   𝜃 𝜓  𝜙 𝜓   𝜙 𝜃 𝜓   𝜃 𝜓

  𝜙 𝜃  𝜙  𝜙 𝜃
];  

 = [

 𝜃    𝜙 𝜃
   𝜙
 𝜃   𝜙 𝜃

]  

 

where   and   denote sinus and cosines, respectively. 

The dynamics of the quadrocopter can be derived by the 

Newton’s second law as follows: 

 

 �̈�0 = ∑     (3) 

 �̇� =  𝜔    𝜔  ∑     (4) 

where  ∈ ℝ3x3;   ∈ ℝ3x3;  ∑     ∈ ℝ3and ∑    ∈ ℝ3  

are the mass matrix, the inertia matrix, the vector of total 

external forces, and the vector of total external torques, 

respectively. Eq. (3) can be written as: 

 

[
   
   
   

] [
�̈�
�̈�
�̈�

] = [

 𝜙 𝜃 𝜓   𝜃 𝜓
  𝜙 𝜃 𝜓   𝜃 𝜓

 𝜙 𝜃
]    [

 
 

   
]  (5) 

 

where  ,  and    = 𝑓  𝑓2  𝑓3  𝑓4 are the total mass 

of quadrocopter, the gravitational acceleration and the 

resulting thrust of the four rotors, 𝑓 , 𝑓2, 𝑓3 and 𝑓4 , 

respectively. Eq. (4) is the rotational dynamics of the 

quadrocopter. Substituting Eq. (2) into Eq. (4), we have 

                                                     

 ( ̇�̇�   �̈�) =    �̇�      �̇�  ∑     (6) 

 

Eq. (6) leads to 

 

   [�̈�, �̈�, �̈�]
𝑇
= [  ,  2,  3]

𝑇  [ 2,  3,  4]
𝑇 (7) 

 

  = [

   𝜃      𝜙 𝜃
      𝜙

   𝜃     𝜙 𝜃
];  

  = (        )�̇��̇� 𝜃  (         )�̇��̇� 𝜙 𝜃  

             (        )�̇��̇� 𝜙 𝜃  (     )�̇�
2 𝜙 𝜙 𝜃; 

 2 = (    (     )  𝜃)�̇��̇� 𝜙 

            (     )(�̇�
2  �̇�2 2𝜙) 𝜃 𝜃; 

 3 = (         )�̇��̇� 𝜃  (        )�̇��̇� 𝜙 𝜃 

             (        )�̇��̇� 𝜙 𝜃  (     )�̇�
2 𝜙 𝜙 𝜃; 

 

where   ,    and    are the moment of inertia of the 

quadrocopter about 𝑥, 𝑦 and 𝑧 axes, and  2 = (𝑓4  𝑓2) , 

 3 = (𝑓  𝑓3)  and  4 = ( 𝑓  𝑓2  𝑓3  𝑓4)  are 

torques resulting from the rotors that cause roll, pitch and 

yaw motion, respectively.   is the distance of rotor to the 

centre of gravity,   is the anti-torque coefficient. From 

Eqs. (5) and (7), the dynamics model is written as 

 

[
  3x3

 3x3  
]

[
 
 
 
 
 
�̈�
�̈�
�̈�
�̈�

�̈�
�̈�]
 
 
 
 
 

 

[
 
 
 
 
 

 
 

   
   

  2

  3]
 
 
 
 
 

=

[
 
 
 
 
 
( 𝜙 𝜃 𝜓   𝜃 𝜓)  

(  𝜙 𝜃 𝜓   𝜃 𝜓)  

 𝜙 𝜃  
 2

 3

 4 ]
 
 
 
 
 

 (8) 

 

For notational simplification, Eq. (8) is written as 

 

 �̈�   =    (9) 

 

3 NONLINEAR SLIDING MODE CONTROL 

To design an NSS, the original dynamics model in Eq. 

(9) is transformed into a regular form as follows: 
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�̇� ( ) =    𝑧 ( )    2𝑧2( )   

�̇�2( ) =  2 𝑧 ( )   22𝑧2( )   2 ( )      (10) 

 

where  = [𝑧 , 𝑧2]
𝑇 =   𝑋 , 𝑧  ℝ   , 𝑧2  ℝ ,    is a  

matrix transforming 𝑋 into  ,  2  ℝ x  ,   is the number 

of the inputs, and    ℝ  is an estimated disturbance 

vector. By introducing the disturbance term, Eq. (9) leads to 

 

𝑧 = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓]𝑇  

𝑧2 = [�̇� �̇� �̇� �̇� �̇� �̇�]
𝑇
  (11) 

 

�̇� = 𝑧2  

�̇�2 =  ( )     (12) 

 

where  ( ) =    (     )  as a synthetic input. With 

regard to the matrices in Eq. (10),    =  2 =  22    x  

are null matrices, and   2 =  2 =   x  are the identity 

matrices. 

3.1. Nonlinear sliding surface design 

The sliding surface is designed as a nonlinear function.  

 

  = [     ][   2]𝑇 (13) 

 

where    and  2 are tracking error vectors of 𝑧  and 𝑧2 

to desired trajectories 𝑧   and 𝑧2 . The matrix  =

diag( 𝑖), 𝑖 =  , , . . ,  , consists of nonlinear functions as 

follows:  

 

  𝑖 =    
 x  ( ‖  ‖)  

 x  (‖  ‖)
,  𝑖 ∈    (14) 

 

where 𝛽𝑖 >   and 𝑘 >  . Next, the control input that 

considers the system stability will be designed based on the 

Lyapunov stability theory. 

3.2 Stability analysis 

Let us define a candidate of the Lyapunov function as 

 

 𝑉 =  .  𝑇  (15) 

 

Differentiating Eq. (15) and considering Eq. (13), we have 

 

 �̇� =  𝑇(  ̇    (    ) ̇   ̇2) (16) 

 

The tracking errors are 

 

   = 𝑧  𝑧    

  2 = 𝑧2  𝑧2  (17) 

 

By differentiating Eq. (17) and substituting it into Eq. (16) 

together with dynamics in Eq. (12), the first derivative of 

the Lyapunov function can be written as 

 

�̇� =  𝑇(  ̇    (    ) ̇   ( )     �̇�2 ) (18) 

 

Designing the control input  ( ) as 

 

 ( ) =  (    ) ̇       ign( )   ̇    �̇�2   (19) 

 

where  ∈ ℝ x  is a positive definite matrix, and 

substituting Eq. (19) into Eq. (18), we have 

 

 �̇� =  𝑇(        ign( )    ) (20) 

 

If the minimum eigenvalue of   is greater than the norm 

of     and  ∈ ℝ x  is positive definite, then �̇� <  , and 

hence the control input in Eq. (19) will stabilize the system 

in Eq. (12).  

By substituting the control input in Eq. (19) into Eq. 

(12) and considering    as the unknown external 

disturbance, the closed loop dynamics of the system is 

 

 ̈  (    ) ̇       ign( )   ̇      =   (21) 

 

Because  ∈ ℝ6x6 and  ∈ ℝ6x6 are positive definite, the 

damping ratio of the closed loop dynamics will change 

according to the magnitude of   . If the error is relatively 

large, then the damping ratio will be reduced, and therefore 

the system will give faster response toward sliding surface. 

If the system is close to the sliding surface then the error 

will be reduced, and the damping ratio will be increased, 

and therefore the response will be slower and overshoot can 

be reduced. Next, the effectiveness of the SMC using the 

NSS in Eq. (19) will be verified by simulation and 

compared with a conventional linear sliding surface. 

 

4 SIMULATION RESULTS 

The parameters used in this simulation as follows are 

those for the experimental system in our laboratory.  

 

 =  .     g;    =   =  .  6 x    3  g. 2;          
  =  .  6 x    2  g.  2;   =  .    ;   =  .    .   2. 
 

The desired trajectories for [ 𝑥, 𝑦, 𝑧, 𝜓]𝑇 are given as 

[𝑥 , 𝑦 , 𝑧 , 𝜓 ]
𝑇, and from Eq. (5), desired angles [𝜙 , 𝜃 ]

𝑇 

for [𝜙, 𝜃]𝑇 can be calculated as follows: 

 

𝜙 = a an (
�̈�  in(𝜓 )  �̈�     (𝜓 )

�̈�   
) 

 

𝜃 = a an

(

 
�̈�    (𝜓 )  �̈�  in (𝜓 )

√(�̈�  in(𝜓 )  �̈�     (𝜓 ))
2
 (�̈�   )2

)

  

 

The control parameters are as follows: 

 

 = diag 6,6,  ,  ,  ,   ;  = diag   ,  ,  ,  ,  ,   ; 
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 = diag  . , . ,  ,  ,  ,  ; 𝛽𝑖 = [  ,  ,  ,  ,  ,  ]𝑇; 

 = diag  .  , .  , .  , .  , .  , .   ; 𝑘 =  . 

 

Setting 𝛽𝑖 to zero of the control strategy in Eq. (19) 

leads to a conventional LSS. Both the NSS and the LSS 

were applied to the tracking control to the same desired 

trajectory. The result is shown in Fig. 2, in which both the 

NSS and the LSS provides the similar performance.  

 

 

 

 
 

 

 

Fig. 2 Helicopter trajectory in NSS and LSS. 

 

The comparison results after applying the step 

disturbance to the control inputs [  ;  2;  3;  4]  whose 

values are [ . ;  .  ;   .  ;  .   ] , respectively, are 

shown in Fig. 3.  

 

 

 

 

 

 

 

Fig. 3 Helicopter trajectory in NSS and LSS under 

disturbance 

 

The NSS can track the trajectory with smaller error 

compared to the LSS. The nonlinear function changes the 

controller gain according to the error magnitude, and 

provides the robust performance. The control inputs in Fig. 

3 are shown in Fig. 4. The control input magnitudes in the 

NSS and the LSS show no significant difference.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Control input in NSS and LSS under disturbance. 

5 CONCLUSION 

A sliding mode controller with a nonlinear sliding 

surface is designed for robust tracking control of a 

quadrocopter. The control system stability is proved by the 

Lyapunov stability theory. The effectiveness of the NSS is 

proved by simulation. Future work verifies the effectiveness 

of the NSS by experiment in which the practical 

disturbance and signal noise exist. 
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