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Abstract: This paper presents investigations into the development of H∞ controller with pole clustering based on LMI 
techniques to control the payload positioning of INTECO 3D crane system with very minimal swing. The linear model of 
INTECO 3D crane system is obtained using the system identification process. Using LMI approach, the regional pole 
placement known as LMI region combined with design objective in H∞ controller guarantee a fast input tracking capability, 
precise payload positioning and very minimal sway motion. A graphical profile of the transient response of crane system with 
respect to pole placement is very useful in giving more flexibility to the researcher in choosing a specific LMI region. The 
results of the response with the controllers are presented in time domains. The performances of control schemes are examined 
in terms of level of input tracking capability, sway angle reduction and time response specification. Finally, the control 
techniques is discussed and presented. 
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1 INTRODUCTION 

The main purpose of controlling an underactuated crane 

system is transporting the payload in a precise location. 

However, it is very difficult due to the fact that the payload 

can exhibit a pendulum-like swinging motion. Various 

attempts in controlling cranes system based on open loop 

and closed-loop control system have been proposed. For 

example, open loop time optimal strategies were applied to 

the crane by many researchers [1,2]. Poor results were 

obtained in these studies because open-loop strategy is 

sensitive to the system parameters and could not 

compensate for the effect of wind disturbance. In other 

hand, feedback control which is well known to be less 

sensitive to disturbances and parameter variations has also 

been adopted for controlling the crane system. For example, 

PD controllers has been proposed for both position and 

anti-swing controls [3]. However, the performance of the 

controller is not very effective in eliminating the steady 

state error. In addition, fuzzy logic controller has also been 

proposed for controlling the crane system by several 

researchers [4]. However, the fuzzy logic designed still 

need to struggle in finding the satisfactory rules, 

membership function, fuzzification and deffuzification 

parameter heuristically. In addition, since crane system is 

an underactuated system, sliding mode control also has 

been proposed by bringing the sliding surface into to the 

system [5]. Furthermore, the underactuated crane behavior 

also gives a very challenging problem in achieving good 

trajectory planning. A few contribution of trajectory 

planning scheme have been reported in [6]–[12]. 

In this project, H∞-synthesis with pole clustering based 

on LMI techniques is used to control the positioning of 

payload with very minimal swing. In order to design the 

controller, the linear model of INTECO 3D crane system as 

shown in Fig. 1 is obtained using the system identification 

process. The reason for choosing H∞-synthesis is because of 

its good performance in handling with various types of 

control objectives such as disturbance cancellation, robust 

stabilization of uncertain systems, input tracking capability 

or shaping of the open-loop response. Nevertheless, the 

weakness of H∞ controller is in handling with transient 

response behavior and closed-loop pole location instead of 

frequency aspects [13]. As we all know, a good time 

response specifications and closed-loop damping of 

underactuated crane system can be achieved by forcing the 

closed-loop poles to the left-half plane. Moreover, many 

literatures have proved that H∞ synthesis can be formulated 

as a convex optimization problem involving linear matrix 

inequalities (LMI) [14]-[16]. In this case, the normal 

Riccati equation with inequality condition was used. This 

behavior will give wide range of flexibility in combining 

several constraints on the closed loop system. This flexible 

nature of LMI schemes can be used to handle H∞ controller 

with pole placement constraints. In this study, the pole 

placement constraints will refer directly to regional pole 

placement [17]. It is slightly difference with point-wise pole 

placement, where poles are assigned to specific locations in 

the complex plane based on specific desired time response 
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specifications. In this case, the closed-loop poles of crane 

system are confined in a suitable region of the complex 

plane. This region consists of wide variety of useful 

clustering area such as half-planes, disks, sectors, 

vertical/horizontal strips, and any intersection thereof [17]. 

Using LMI approach, the regional pole placement known as 

LMI region combined with design objective in H∞ 

controller should guarantee a fast input tracking capability, 

precise payload positioning and very minimal sway motion. 

As an extension of previous work, this report presents a 

graphical profile of the transient response of crane system 

with respect to pole placement constraint variation. This 

graphical analysis is very useful in giving more flexibility 

to the researcher in choosing a specific LMI region.  

The rest of this report is structured in the following 

manner. The next section provides a description of the 

linear model of underactuated crane system based on 

system identification procedure. In section 3, the design of 

H∞ controller with pole placement constraint is explained. 

The graphical profile of crane performance with LMI 

region variation also discussed in this section. Simulation 

and experimental validation are reported in Section 4. 

Finally, concluding remarks are offered in the last section. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  INTECO 3D Crane. 

 

2 MODELLING OF INTECO 3D CRANE 

This section provides a brief description on the 

modelling of the underactuated crane system, as a basis of a 

simulation environment for development and assessment of 

the proposed control scheme. The system identification 

approach is used to determine the parameter of DC motor 

for cart position and pendulum behavior for sway motion 

respectively. In this study, only two-dimensional crane 

system with payload is considered. In order to have a 

precise end-point payload motion, the equation of payload 

position, second order DC motor and pendulum sway 

motion are described in (1), (2) and (3) respectively 

 
 θsinlxx cl +=  (1) 

 

 u
T

K
x

T
x cc +−= &&&

1  (2) 

 
 ( ) θsinmgxxDxm cll −−−= &&&&  (3) 

 

where the meaning of different variables is given in 

Table 1. 

 

Table 1: Variable description 

Sym

bols 
Meaning 

lx  Payload  position 
cx  Cart position 

l Length of the rope 

θ Sway angle 

T Time constant 

K Motor gain 

D Damping constant 

m 
Mass of the 

payload 

g Gravity effect 

u Driving voltage 

 

Using the assumption of 1cos ≅θ  and  θθ ≅sin  , (1) 

and (3) can be expressed as follow 

 

 θlxx cl +=  (4) 

 

 ( ) θmgxxDxm cll −−−= &&&&  (5) 

 

Next, by substituting (4) in (5) and (2) respectively, the 

final equation of motion can be described as 

θθ &&&

m

lD
gxl −−=  (6) 

 

  u
lT

K

Tm

D

l

g
x

lT l −






 +−−= θθθ &&&& 11  (7) 

 

 

Since the design of proposed controller must required 

the state space representation of the system, equation (6) 

and (7) are arranged into state space form as shown in (8): 

 

 DuCxy

BuAxx
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+=&

 (8) 
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Where 
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with state variable [ ]Tll xxx θθ &&= . 

Using simple empirical method in system identification 

process, the parameters value of crane system are defined 

as m = 0.732 kg, g = 9.8067 m/s2, T = 0.0999 s, K = 0.3175 

m/s2V, D = 0.0168 and l = 0.4335 m. 

3 DESIGN OF H
∞∞∞∞

 CONTROLLER WITH LM
I REGION  

In this study, an integral state feedback control is used as a 
platform to design the proposed controller. The block 
diagram of integral state feedback control is shown in Fig. 
2. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Block diagram of integral state feedback control. 

 
The main objective of the proposed controller is to find the 
gain parameter matrix, F and G such that it fulfills the 
design requirement. From the block diagram of Figure 2, 
the control input of the system is derived as follow 
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Next, at the steady state condition as ∞→t , the state 
space equation can be written in the following form 
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By subtracting (10) to (11), the state space form is 
converted to 
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Then, the new control input function is described as follow 
 

 

)(~)(~)(~)(~ txKtvGtxFtu e=+=  (13) 

 
Finally, a closed loop state space equation with controller 
gain, K can be obtained below 
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and w  is exogenous input disturbance or reference input 
to the system. Let )(sGyw denote the closed loop transfer 

function from w  to y under state feedback control 
Kxu = . Then, for a prescribed closed loop H∞ performance 
0>γ , our constrained H∞ problem consists of finding a 

state feedback gain K that fulfil the following objectives: 
(1) The closed loop poles are required to lie in some LMI 

stability region D contained in the left-half plane 

(2) Guarantees the H∞ performance γ<
∞ywG  

 
Quote from the definition in [13], a subset D of the complex 
plane is called an LMI region if there exist a symmetric 

matrix mm×∈ Rα  and a matrix mm×∈ Rβ  such that  

 
 }0)(:{ <∈= zfz

D
D C  (15) 

where 
 

 Tzzzf ββα ++=:)(
D

  

 
Then, pole location in a given LMI region can be 
characterized in terms of the mm×  block matrix 

G B C 

A 

F 
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r e(t) v(t) u(t) )(tx&  )(tx  )(ty  
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Quote from the theorem in [10], the matrix clA
~

 is D-stable 

if and only if there exists a symmetric matrix X such that 
 

 0,0),
~

( ><
DDD

XXAM cl  (17) 

 
In this study, the region ),,( θλ rS  of complex numbers 

jyx +  such that 

 
 yxrjyxx −<<+<−< θλ tan,,0  (18) 

 
as shown in Fig. 3 is considered.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Region ),,( θλ rS  
 
The advantages of placing the closed loop poles to this 
region are the cart position response ensures a minimum 
decay rate λ , a minimum damping ratio θζ cos= , and a 

maximum undamped natural frequency θω sinrd =  [13]. 

Equation (19), (20) and (21) show the clustering region 
used in this study which are λ –stability region, a disk and 
the conic sector respectively.  
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where this region is the intersection of three elementary 

LMI regions ( ),
~

(
DD3D2D1

XAM cl∩∩ ).  

Motivated from the previous work, this study presents 
an effective way to determine the parameter of region 

),,( θλ rS  which in turn bounds the desired maximum 

overshoot, rise time, settling time, control input and 

frequency of oscillatory modes. As the transient response 
profiles varied when the parameter of region is changed, it 
is suitable to introduce the 3D graphical profiles of LMI 
region performance. Consider λ  is fixed, this 
investigations only focused on the variation of parameter 
r  and θ . Then, these parameters are chosen based on 
desired underactuated crane performance from the 
graphical profile.  

Meanwhile, the H∞ constraint is equivalent to the 
existence of a solution 0>∞X  to the LMI 
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Equation (22) is also known as the Bounded Real Lemma 
[18]. As mentioned before, the main objective of this study 
is to minimize the H∞ norm of )(sGyw  over all state 

feedback gains K that enforce the pole constraints. However, 
this problem is not jointly convex in the variables

D1
X , 

D2
X , 

D3
X , ∞X  and K. The convexity can be enforced 

by seeking a common solution 
 
 0>==== ∞XXXXX
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 (23) 

 
to (19)-(22) and rewriting these equations using the 
auxiliary variable KXY = . These changes of variables 
lead to the suboptimal LMI approach to H∞ synthesis with 
pole assignment in LMI regions. As a result, the new 
representations of (19)-(22) are shown in the following 
equation. 
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is an ellipsis for terms induced by symmetry [17]. In this 
study, the entire LMI problem is solved using well known 
LMI optimization software which is LMI Control Toolbox.  
 Next, to verify the effectiveness of graphical 
LMI region profile, several specifications have been set up: 

• Settling time of 2.5 s with overshoot less than 1% 
and zero steady state error for the cart movement; 

r  

λ  

θ  
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• Sway oscillation is less than ±0.05 rad; 
• Control input does not exceed 1 V; 

In other words, the designed state feedback gain K also 
must fulfil the mentioned specifications. Computing (24)-
(27) using LMI Control Toolbox, the graphical profiles of 
the underactuated crane system performance are depicted in 
APPENDIX A. In this case, λ  is fixed at -3 while the 
conic sector and disk are varies. 
 

4 SIMULATION AND EXPERIMENTAL 
VALIDATION 

Applying the LMI conditions in (24)-(27) with the 
advantage of graphical profiles, the parameter of conic 
sectors and disk that fulfil the design requirement is at 

4=r  and o28=θ . Then, the state feedback gain, K is 
obtained as followed: 
 

]8.42773    0.9993    13.6133   2.9956-   -11.2759[=K  

  
with 9073.64=γ . This state feedback gain also guarantees 

the H∞ performance γ<
∞ywG .  Fig. 4 shows that the 

location of poles has been confined in the selected LMI 
region. The simulation and experimental validation 
response of cart position, sway angle and control input are 
depicted in Fig. 5. Close agreement between simulation and 
experimental results has been successfully achieved. Note 
that, the cart position response track the desired response of 
0.3 m with zero steady state error and settling time of 2.5 s 
with minimal overshoot. The maximum oscillation of sway 
angle also has been reduced to ±0.05 rad. Finally, the 
control input of less than 1 V, has been successfully 
obtained.      
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Fig. 4. Location of poles in selected LMI region 
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Fig. 5. Response of the underactuated crane system  

5 CONCLUSION 

 This study has introduced new graphical LMI region 
profile which gives great flexibility in choosing specific 
parameter of pole placement constraint. The usefulness of 
this profile has been demonstrated to underactuated crane 
system using H∞ synthesis with closed loop pole clustering 
constraint. This LMI approach has been implemented in the 
LMI Control Toolbox and validated using INTECO 3D 
Crane experimental rig with satisfactory results. 
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Fig. 6 Settling time profile 
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Fig. 7 Rise time profile 
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Fig. 8 Overshoot profile 
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Fig. 9 Maximum sway profile 
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