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Abstract:

Self-triggered control is a control method that the control input and the sampling period are computed si-

multaneously in sampled-data control systems, and is extensively studied in the field of networked control systems. In
this paper, a new approach for self-triggered control is proposed based on model predictive control. First, the optimal
control problem with horizon one, in which the first sampling period and the control input are found, is formulated. By
solving this problem at each sampling interval, self-triggered model predictive control is realized. Next, an iterative so-
Iution method is proposed. In this solution method, a quadratic programming problem is repeatedly solved. Finally, the
effectiveness of the proposed approach is shown by a numerical example.
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1. INTRODUCTION

In recent years, analysis and synthesis of networked
control systems (NCSs) have been extensively studied [1,
4]. An NCS is a control system in which plants, sensors,
controllers, and actuators are connected through commu-
nication networks. In distributed control systems, sub-
systems are frequently connected via communication net-
works, and it is important to consider analysis and synthe-
sis of distributed control systems from the viewpoint of
NCSs. In design of NCSs, several technical issues such as
packet losses and transmission delays are included. How-
ever, it is difficult to consider these issues in a unified
way, and it is suitable to discuss an individual problem.
From this viewpoint, several results have been obtained
so far (see, e.g., [6-9]).

In this paper, the periodic paradigm is focused as one
of the technical issues in NCSs. The periodic paradigm is
that the controller is periodically executed at a given unit
of time. The period is chosen based on CPU process-
ing time, communication bandwidth, and so on. How-
ever, in NCSs, communication should occur, when there
exists important information, which must be transmitted
from the controller to the actuator and/or from the sensor
to the controller. In this sense, the periodic paradigm is
not necessarily suitable, and it is important to consider a
new approach for design of NCSs. As one of the meth-
ods to overcome this drawback of the periodic paradigm,
self-triggered control has been proposed so far (see, e.g.,
[2,3,5,10,13]). In self-triggered control, the next sam-
pling time at which the control input is recomputed is
computed. That is, both the sampling period and the con-
trol input are computed simultaneously. In many existing
works, first, the continuous-time controller is obtained,
and after that, the sampling period such that stability is
preserved is computed. However, few results on optimal
control have been obtained so far. From the viewpoint of
optimal control, for example, a design method based one-
step finite horizon boundary has been recently proposed
in [12, 14]. In this method, the first sampling period such
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that the optimal value of the cost function is improved, is
computed under the constraint that other sampling peri-
ods are given as a constant. However, a nonlinear equa-
tion must be solved. Furthermore, input constraints can-
not be considered in this method.

In this paper, a new approach for self-triggered control
is proposed based on model predictive control (MPC).
First, the optimal control problem with horizon one, in
which the first sampling period and the control input are
found, is formulated. By solving this problem at each
sampling interval, self-triggered model predictive control
is realized. Next, an iterative solution method is pro-
posed. In this solution method, quadratic programming
(QP) problems are repeatedly solved. Then, we can im-
pose input constraints for the system. Finally, the effec-
tiveness of the proposed approach is shown by a numeri-
cal example. The proposed approach provides us a basic
result for self-triggered optimal control.

Notation: Let R denote the set of real numbers. Let
I, 0., x» denote the n X n identity matrix, the m xn zero
matrix, respectively. For simplicity, we sometimes use
the symbol 0 instead of 0,,, x ., and the symbol [ instead
of I,,.

2. PROBLEM FORMULATION

Consider the following continuous-time linear system:
z(t) = Azx(t) + Bu(t) (1)

where © € R™ is the state, and v € [Umin, Umax] <
R™ is the control input. Umin, Umax € R are given
constants, and the interval [tumin, Umax] €Xpresses input
constraints. By #x, £ = 0,1,..., denote the sampling
time, and by Ay, := t;4+1 —tx, denote the sampling period.
Assume that the control input is piecewise constant, that
is, the control input is given as

U(t) = u(tk), te [tk,tk+1).

Hereafter, we denote u(t;) as uy. In addition, assume
that a pair (A, B) is controllable.



Before the problem studied here is formulated, some
preparations are given. Suppose that hg is a decision vari-
able, and h; = h, ¢ > 1 is satisfied, where h > 0 is a
given constant. We also suppose that the input constraint
is imposed in the time interval [to, hg +h(N — 1)), where
N > 1is a given integer. Note here that the input con-
straint is not imposed in the time interval [hg + A(N —
1), 00). Then, consider the following cost function

J=J1+ 2+ J3, 2)

Jy = " {2T(®)Qz(t) + u” (t)Ru(t)} dt,

to

ho+h(N—1)
Jy = /} {2"()Qz(t) + u” (t)Ru(t)} dt,

J3 = /OC {z"(t)Qz(t) + u” (t)Ru(t)} dt
ho+h(N—1)

= 27 (ho + h(N — 1))P(h)x(ho + h(N — 1)).

In the above cost function, P(h) is a symmetric posi-
tive definite matrix, which is a solution of the following
discrete-time algebraic Riccati equation

AT (h)P(h)A(h) — P(h) — (A" (h)P(h)B(h) + S(h))
x (BT (h)P(h)B(h) + R(h))™!
x(BT(h)P(h)A(h) + ST (h)) + Q(h) =0

where

and

F::{A B}

Since the input constraint is not imposed in the time in-
terval [hg + h(N — 1), 00), the optimal value of .J3 can
be explicitly characterized by x(ho + h(N — 1)).

Under the above preparation, consider the following
problem.

Problem 1: Suppose that for the system (1), the
initial time t¢, the initial state 2(0) = xg, hy = hy =
--+=nh, N >1,and v > 1 are given. Then find a control
input sequence ug, U1, - . . , UN—1 Maximizing a sampling
period hg under the following constraints

h S hO S hmaxa

Umin < Uk < Umax, k:()v]-v"'vN_]-v 3)

Ty < g 4)
where hy.x > 0 is a given constant, and JZO is the op-
timal value of the cost function of (2), J;; is the optimal
value of the cost function of (2) under hg = h. |

In Problem 1, control performance can be adjusted by
suitably giving . We remark that in this problem, hg
is maximized under some constraints. Furthermore, in
this problem, a control input sequence is computed, but
on sampling periods, only the first one (hg) is computed.
In this sense, this problem is regarded as a kind of the
optimal control problem with prediction horizon one.
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3. PROPOSED SOLUTION METHOD

First, for a fixed hg, consider deriving J, ;:0' The value
of J; can be derived by a similar method. The value of
J},, is given as the optimal value of the following optimal
control problem.

Problem 2: Suppose that for the system (1), the
initial time ¢, the initial state z(0) = xq, ho and hy =
hy =---=h, N > 1are given. Then find a control input
sequence ug, U1, . . . , 4 y—1 Minimizing the cost function
(2) under the input constraint (3) |

From the result on sampled-data control theory, Prob-
lem 2 can be equivalently rewritten as the following opti-
mal control problem of discrete-time linear systems.

Problem 3: Suppose that the initial time ¢, the ini-
tial state 2(0) = xg, ho and hy = hy = --- = h,
N > 1 are given. Consider the following discrete-time
linear system ~

xr] = A(ho)l‘o + B(ho)’u,o7

Tpr1 = A(h)xy + B(h)ug, k>1
where xy := x(tx). Then find a control input sequence
Ug, U1, - .., UN—1 Minimizing the cost function (2), i.e.,

SRR

SINEE A

k=1
+al P(h)zyn &)
under the input constraint (3). |

Next, consider reducing Problem 3 to a QP problem.
Define

_ T
zo=[af 2] 2y,
_ T
= [ul uf - 2k, ]
Then we can obtain # = Az + B where
_ I -
 A(ho)
_ A(h)A(ho)
A= A2(n)A(ho)
L AN=1(h) A(h)

and
i 0 0 0 7
B(ho) 0
5| AmB) B(h)
RWBh)  A(WB(O)
| e AV-BG) - BN

In addition, we define

Q := block-diag(Q(ho), Q(h), ..., Q(h), P(h)),
5. block-diag(S(ho), S(h), ..., S(h))
o OnX(N—l

)
R := block-diag(R(ho), R(h), ..., R(h)).

m
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Then the cost function (5) can be rewritten as follows:
J=37Qz +2z7Su+ u' Ru
= 4l Lyt + L1 + Ly
where
Ly=R+BTS+58"B+BTQB,
L, = 2:TAT(S + QB),
LO = ngTQAIO
T ,T T

~ T T = .
Finally, %min = [ Umin Umin *°° Ymin )* a0d max =

[ul ul -l 17T are also defined.
Under the above preparation, Problem 3 is equivalent

to the following QP problem:

Problem A:
find wg,u1,...,un—1,
min @’ Lot + L@ + Lo,
subject t0  Umin < U < Umax-

A QP problem can be solved by using a suitable solver
such as MATLAB and IBM ILOG CPLEX [15].

Finally, by using the obtained QP problem, we propose
an algorithm for solving Problem 1.

Algorithm 1:
Step 1: Derive J; by solving Problem A with hy = h.

Step 2: Seta = h and b = hyax, and give a sufficiently
small positive real number €.

Step 3: Set ho = (a +b)/2.
Step 4: Derive J; by solving Problem A.

Step 5: If J,’;O < vJj in Problem 1 is satisfied, then set
a = hg, otherwise set b = hyg.

Step 6: If |a — b| < ¢ is satisfied, then the optimal hg in
Problem 1 is derived as a, and the optimal control input
sequence is also derived. Otherwise go to Step 3.

In a numerical example (Section 5), we will discuss
the computation time of Algorithm 1.

4. SELF-TRIGGERED MODEL
PREDICTIVE CONTROL

We show a procedure of MPC based on the proposed
solution method for Problem 1.

Procedure of Self-Triggered MPC:

Step 1: Set ¢y = 0, and give the initial state 2(0) = xo.
Step 2: Solve Problem 1.

Step 3: Apply only u(t), t € [to,to + ho) to the plant.

Step 4: Compute the predicated state Z(to + ho) by using
I(to), ho and ug-

Step 5: Solve Problem 1 by using &(to + ho) as xo.
Step 6: Wait until time ¢ + hy.
Step 7: Update t( := to + ho, and measure z (). Return
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to Step 3.

Note here that in this procedure, the timing (i.e., the
sampling time) to measure the state and to recompute the
control input is computed. In this sense, self-triggered
control is realized.

S. NUMERICAL EXAMPLE

Consider the following system:

0 1

0
5 _8 1 ©®)

z(t) = { } x(t) + { } u(t).
The input constraint is given as u(t) € [—10,+10]. Pa-
rameters in Problem 1 are given as follows: h = 0.5,
v = 1.001, hax = 5, Q = 103I,,, and R = 1. In Al-
gorithm 1, we set ¢ = 10~%. Then P(h) can be derived

: ].

In addition, we consider two cases, i.e., thecase of N = 1
and the case of NV = 10.

We show the computation result on self-triggered
MPC using Problem 1. The initial state is given as
xo = [ 10 10 ]7, and the case of N = 10 is consid-
ered. Fig. 1 shows the obtained state and input trajecto-
ries. From this figure, we see that the sampling period is
non-uniform.

Next, compare two cases. In these cases, the obtained
state trajectories are almost the same. The difference be-
tween two cases is as follows. In Fig. 1, the value of the
control input at each time is shown as follows:

10615 593

P (h):{ 593 575

u(t) = —10.00, ¢ € [0,1.83), ho = 1.83,

u(t) = —1.90, ¢ € [1.83,3.23), ho = 1.41,
u(t) = —0.49, t € [3.23,4.49), ho = 1.25,
u(t) = —0.14, t € [4.49,5.69), ho = 1.21,
u(t) = —0.04, t € [5.69,6.89), ho = 1.20,
u(t) = —0.01, t € [6.89,8.08), ho = 1.19.

On the other hand, in the case of N = 1, the value of the
control input at each time is derived as follows:

u(t) = —10.00, ¢ € [0,0.62), ho = 0.62,

u(t) = —10.00, ¢ € [0.62,1.66), ho = 1.03,
u(t) = —2.62, t € [1.66,2.88), ho=1.22,
u(t) = —0.75, t € [2.88,4.08), ho = 1.20,
u(t) = —0.22, t € [4.08,5.27), ho = 1.19,
u(t) = —0.06, t€ [5.27,6.47), ho = 1.19,
u(t) = —0.02, t € [6.47,7.66), ho = 1.19,
u(t) = —0.01, t € [7.66,8.85), ho = 1.19.

From these results, we can obtain the following obser-
vation. In this example, input saturation is needed to
improve the transient behavior. However, in the case of
N =1, the time interval of input saturation was not com-
puted suitably. As a result, to derive the state trajectory



State

Control input

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8
Time Time

Fig. 1 State and input trajectories (N = 10).

at time interval [0, 8), Problem 1 was solved eight times.
In the case of N = 10, Problem 1 was solved six times,
and the above problem is overcome. So it is important to
choose a suitable N. We remark that in this example, the
computation result in the case of N = 20 is the same as
that in the case of NV = 10. In this sense, N = 10 is one
of the suitable horizons.

In addition, we discuss the effect of changing v in (4).
In the case of N = 10, consider the following cases:
v = 1.001, 1.005, 1.010, 1.015, 1.020. For each case,
the first hyg is obtained as follows:

v=1.001: hg=1.83,
v =1.005: ho=2.38,
v=1.010: ho=2.79,
v=1.015: ho=3.12,
v=1.020: ho=3.44.

From these results, we see that hy becomes longer by set-
ting a larger . Since control performance decreases for a
larger ~, it is important to consider the trade-off between
~ and hg.

Finally, we discuss the computation time for solving
Problem 1. In the case of N = 10, Problem 1 with the
different initial state was solved six times. Then the mean
computation time for solving Problem 1 was 6.51 [sec],
where we used IBM ILOG CPLEX 11.0[15] as the MIQP
solver on the computer with the Intel Core2 Duo 3.0GHz
processor and the 2GB memory. In the case of N = 1,
Problem 1 with the different initial state was solved eight
times. Then the mean computation time was 6.22 [sec]. It
is one of the future works to consider several approaches
for reducing the computation time.

6. CONCLUSION

In this paper, we have proposed a self-triggered opti-
mal control method based on model predictive control.
By focusing on only the first sampling period in the op-
timal control problem, we have proposed an iterative so-
lution method (Algorithm 1). The effectiveness of the
proposed method has been shown by a numerical exam-
ple. The proposed methods are useful as a new method
of self-triggered optimal control.

In the future works, it is important to develop a more
efficient method for solving Problem 1. Then continua-
tion methods [11] may be useful. It is also significant to
analyze stability of the closed-loop system.

This work was partially supported by Grant-in-Aid for
Young Scientists (B) 23760387.
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