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Abstract: Continuous function optimization is an important problem in science and engineering. The real-coded genetic 

algorithm (RCGA) has shown good performance in continuous function optimization. AREX/JGG is one of the most 

promising RCGAs. However, we believe that AREX/JGG has two problems in terms of search efficiency. In this paper, we 

propose a new RCGA that overcomes the problems of AREX/JGG. In order to examine the effectiveness of the proposed 

RCGA, we compared the performance of the proposed RCGA with that of AREX/JGG on several benchmark problems in 

which initial populations do not cover the optimal points. As the result, we confirmed that the proposed RCGA succeeded in 

finding the optimal points faster than AREX/JGG. 
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1 Introduction 

Continuous function optimization is an important prob-

lem that we often face in various domains such as science 

and engineering. In recent years, several real-coded Genetic 

Algorithms (RCGAs) for function optimization have been 

studied actively [1-4]. It has been reported that RCGAs are 

effective in optimizing high-dimensional functions with 

multimodality, epistasis and ill-scaleness. However, most 

conventional RCGAs have a serious problem that the 

performance deteriorates when the population does not 

cover the optimal point. 

In order to remedy the above problem of the conven-

tional RCGAs in the case where the population does not 

cover the optimum, Akimoto et al. has proposed 

AREX/JGG and reported that AREX/JGG shows better 

performance than the conventional RCGAs in benchmark 

problems in which initial regions do not cover the optimal 

points [3, 4]. However, we believe that AREX/JGG has the 

following two problems in terms of search efficiency: 1) If 

the population distribution does not cover the optimal point, 

AREX/JGG does not always generate offspring and elimi-

nate individuals in the population so that the population 

distribution efficiently moves towards the optimal point. 2) 

If the population distribution covers the optimal point, 

AREX/JGG does not always generate offspring and elimi-

nate individuals in the population so that the population 

efficiently converges towards the optimal point. 

In this paper, we propose a new RCGA that overcomes 

the above two problems of AREX/JGG. In order to exam-

ine the effectiveness of the proposed method, we compare 

the performance of the proposed RCGA with that of 

AREX/JGG on several benchmark problems with 

multimodality, strong epistasis and ill-scaleness in which 

initial regions do not cover the optimal points. 

2 AREX/JGG and Its Problems 

2.1 Just Generation Gap (JGG) 

JGG has been designed as a generation alternation model 

for multi-parent crossover operators [3, 4]. The algorithm 

of JGG is as follow. 

(1) Initialization:  

Randomly generate an initial population {pk | k=1,…,τ} 

within a specified region. Evaluate the object function 

values of all the individuals in the population. Initialize 

the generation number g with 1. 

(2) Mating Selection: Randomly choose parents 

{yj|j=1,…,n+1} from the population {pk |k=1,…,τ}, 

where n is the dimension of the problem. 

(3) Generation of offspring: Generate offspring 

{xi|i=1,…,τ} by applying AREX to parents 

{yj|j=1,…,n+1}. Evaluate the object function values of 

the offspring {xi|i=1,…,τ}. 

(4) Survival Selection: Select the best n+1 offspring 

among the offspring {xi|i=1,…,τ} and remove the par-

ents {yj|j=1,…,n+1} form the population {pk |k=1,…,τ}. 

(5) If termination conditions are satisfied, terminate the 

algorithm. Otherwise, g ← g+1 and go to step2. 

2.2 AREX (Adaptive Real-coded Ensemble Crossover) 

AREX has been proposed to remedy a serious problem 

of conventional real-coded GAs that premature conver-

gence often occurs when the population does not cover the 

optimal point [3, 4].  

AREX generates offspring by 

⋯(7) 
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where m is the center of crossover and α is the expansion 

rate to be adapted.  

The center of crossover m is calculated by  

 

 

where k;μ denotes the best k individual out of μ parents. wk 

(k=1,…,μ) denote weights where ∑   
 
      and are 

calculated by Eq.(3). 

 

Using Eq.(2) as the center of crossover, AREX aims at 

prompting the center of mass of the population to move 

towards the promising region.  

The expansion rate α is adapted so that offspring are 

generated wider than their parents in order to keep the 

diversity of the population when the population moves. The 

expansion rate α is adapted as follows: 

 

 

 

where the g and cα are the generation number and the learn-

ing rate, respectively. Lcdp is the Mahalanobis distance be-

tween the center of crossover m and the mean of the best μ 

offspring 〈 〉μ. Lcdp is defined by Eq.(5) and is calculated by 

Eq.(6). 

 

 

 

 

C is the covariance matrix of the offspring distribution and 

  is the Moore-Penrose inverse matrix of C. The i:λ 

denotes the index of the best i-th individual among the λ 

offspring. Lavg denotes the expected value of the squared 

distance under random selection and is calculated by Eq.(7). 

 

 

2.3 Problems of AREX/JGG 

AREX/JGG generates an offspring distribution near 

around n+1 parents randomly chosen from the population 

and replaces the n+1 parent with the n+1 best offspring. 

Therefore, assuming big-valley functions, we believe that 

AREX/JGG has two problems in terms of search efficiency. 

[Problem 1] As shown Fig.1, if the population distribution 

does not cover the optimal point in the search space, 

AREX/JGG does not always generate offspring in the outer 

area of the population distribution near the optimal point, 

eliminate individuals in the outer area of the population 

distribution far from the optimal point and extend the 

population distribution. Therefore, we believe that 

AREX/JGG cannot effectively move the population 

distribution toward the optimal point. 

[Problem 2] As shown Fig.2, if the population distribution 

covers the optimal point, AREX/JGG does not always 

generate offspring near around the optimal point and 

eliminate individuals in the outer area of the population 

distribution. Furthermore, if the offspring distribution is not 

generated so as to cover the optimal point, the expansion 

rate in Eq.(4) increases, which means that the search 

becomes inefficient. Therefore, we believe that AREX/JGG 

cannot efficiently shrink the population distribution to the 

optimal point. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Offspring distribution generated by AREX/JGG 

when the population does not cover the optimal point. 

 

 

 

 

 

 

 

 

 

 

Fig.2. Offspring distribution generated by AREX/JGG 

when the population covers the optimal point. 

 

3 The Proposed RCGA 

3.1 Basic ideas 

In this section, we describe our basic ideas to overcome 

the problems of AREX/JGG pointed out in section 2.3. If 

the population does not cover the optimal point, we 

generate offspring in the outer area of the population near 

the optimal point and eliminate individuals far from the 

optimal point from the population. This is expected to result 

in the population quickly moving towards the optimal point. 

On the other hand, if the population distribution covers the 

optimal point, we generate offspring near around the 

optimal point and eliminate individuals in the outer area of 

the population. By doing this, we expect that the population 

distribution converges to the optimal point quickly.  

Based on the above basic ideas, we propose a new RCGA 

that consists of the following mating selection method, 

crossover operator and survival selection method. 

Mating selection: The proposed RCGA chooses the n+1 

worst individuals in the population as parents. As the result, 

as shown in Fig.3, if the population distribution does not 

⋯( ) 

⋯(2) 

⋯(3) 

⋯(4) 

⋯(5) 

⋯(6) 

⋯(7) 

Offspring distribution

Parents yj

Center of mass of the population m

Mean of parents<y>

Population distribution

Optimal point

Offspring distribution
Parents yj

Center of mass population m

Mean of parents <y>

Population distribution

Optimal point
Mean of the best n+1 parents
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cover the optimal point, the proposed mating selection 

method is expected to choose individuals in the outer area 

of the population distribution far from the optimal point. On 

the other hand, if the population distribution covers the 

optimal point, as shown in Fig.4, the proposed mating 

selection method is expected to choose individuals in the 

outer area of the population distribution. 

Crossover: As shown in Fig.3 and Fig.4, the proposed 

RCGA generates an offspring distribution by crossover 

whose center is a weighted mean of the all individuals in 

the population. As the result, as shown in Fig. 3, if the 

population distribution does not cover the optimal point, the 

proposed RCGA is expected to generate offspring also in 

the outer area of the population near the optimal point. On 

the other hands, if the population distribution covers the 

optimal point, as shown in Fig.4, the proposed RCGA is 

expected to generate many offspring near around the 

optimal point. Furthermore, the proposed RCGA also 

adapts the expansion rate according to the Mahalanobis 

distance between the center of crossover and the mean of 

the best n+1 offspring as AREX does. While the expansion 

rate in AREX/JGG is only for expanding the population 

distribution in order to avoid the premature convergence,   

the expansion rate in the proposed RCGA is for not only 

expanding the population distribution but also shrinking it. 

As the result, if the population distribution covers the 

optimal point, the proposed RCGA is expected to be able to 

shrink the population distribution in the optimal point 

quickly. 

Survival selection: The proposed RCGA replaces the n+1 

worst parents in the population with the n+1 best offspring. 

As the result, if the population distribution does not cover 

the optimal point, as shown in the Fig.3, the proposed 

RCGA is expected to eliminate individuals far from the 

optimal point in the population distribution. On the other 

hand, if the population distribution covers the optimal point, 

as shown in the Fig.4, the proposed RCGA is expected to 

remove the individuals in the outer area of the population 

distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Offspring distribution generated by the proposed 

RCGA when the population does not cover the optimal 

point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Offspring distribution generated by the proposed 

RCGA when the population covers the optimal point. 

 

3.2 Algorithm 

The algorithm of the proposed RCGA is as follows. 

(1) Initialization: Generate an initial population 

{pk|k=1,…,τ} randomly within a specified region. 

Evaluate the objective function values of all the 

individuals in the population. Initialize the generation 

number g with 1. 

(2) Mating Selection: Choose the n+1 worst individuals 

in the population {pk|k=1,…,τ} as parents 

{yj|j=1,…,n+1}, where n is the dimension of the prob-

lem. 

(3) Generation of offspring: Generate offspring 

{xi|i=1,…,τ} with the parents {yj|j=1,…,n+1} accord-

ing to Eq.(8) and evaluate the objective function val-

ues of the offspring {xi|i=1,…,τ}. 

 

 

 

m’ is a weighted mean vector calculated by Eq.(9). 

 

 

 

k;τ denotes the index of the best k individual in the 

population whose size is τ. wk is a linear weight where 

∑   
 
     . wk is calculated by using the best τα 

individuals in the population {pk|k=1,…,τ} according 

to Eq.(10). 

 

 

α in Eq.(8) is the expansion rate and is given by 

Eq.(11). 

 

 

 

 

 

 

 

where 〈  〉  ∑         
 
    and ε N(0，  ). i:λ is 

the index of the best i individual of the λ offspring. 

Note that the proposed RCGA allows the expansion 

rate to become smaller than 1.0 while that in 

AREX/JGG is always larger than or equal to 1.0. 

 

(4) Survival Selection: Sort the offspring {xi|i=1,…,τ} 

by the objective function values. Replace the parents 

Offspring distribution

Parents yj

Weighted mean of the population m

Optimal point

Population distribution
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{yj|j=1,…,n+1} in the population with the n+1 best 

offspring. 

(5) Termination Condition: If termination conditions 

are satisfied, terminate the algorithm. Otherwise, g ← 

g+1 and go to step 2. 

 

3 Experiments 
In order to examine the effectiveness of the proposed 

RCGA, we compared the performance of the proposed 

RCGA with that of AREX/JGG.  The system parameters 

of AREX/JGG are set to the recommended values in the 

literature [4]. 

We use the 20-dimensional unimodal benchmark 

functions (Sphere, Rosenbrock-Star, Rosenbrock-Chain, 

Ellipsoid, k-Tablet) and the 20-dimensional multimodel 

benchmark functions (Ackley, Bohachevsky, Schaffer, 

Rastrigin) as shown in Table 1. The optimal points of the 

Rosenbrock-Star function and the Rosenbrock-Chain 

function are xopt=[       ]  and the optimal points of the 

other functions are xopt=[0     0] . The function value of 

the optimal point of each function f(xopt) is zero. The initial 

regions are set to [  5]   for the Sphere, Ellipsoid, k-

tablet and Rastrigin functions, [ 2 2]   for the 

Rosenbrock-Star and Rosenbrock-Chain functions, 
[  30]   for the Ackley function, [   5]   for the 

Bohachevsky function and [   00]   for the Schaffer 

function. 

We made preliminary experiments to determine the 

population size and the number of offspring per crossover 

for the combination of each algorithm and each benchmark 

problem. They were determined so that the average number 

of evaluations becomes the smallest under the constraint 

that the algorithm succeeded in finding the optimum on the 

benchmark problem in all the ten trials. We use the average 

number of evaluations as a performance index. 

Table 2 shows the experimental result. The proposed 

RCGA succeeded in finding the optimal points faster than 

AREX/JGG in all the benchmark functions. This result 

suggests that the proposed RCGA is more effective than 

AREX/JGG. 

 

4. Conclusions 

In this paper, we proposed a new RCGA in order to  

overcome the problems of AREX/JGG. The proposed 

RCGA consists of the mating selection that chooses the n+1 

worst individuals in the population as parents, the crossover 

that employs a weighted mean of the population as the 

center of the crossover and the survival selection that 

replaces the n+1 worst parents in the population with the 

n+1 best offspring. We confirmed that the proposed RCGA 

outperformed AREX/JGG on various benchmark functions 

through numerical experiments. 

We have a plan to evaluate the performance of the 

proposed RCGA in higher-dimensional problems and, if 

necessary, we have to improve the proposed RCGA. We 

also will apply the proposed RCGA to difficult real-world 

applications such as the lens design problem in order to 

investigate the effectiveness of the proposed RCGA. 

Table 1. : Benchmark functions. 

 
 

Table 2. : The average numbers of evaluations of 

AREX/JGG and the proposed RCGA. The numbers in the 

parentheses are the population size and the number of 

offspring per crossover, respectively, where n (=20) is the 

dimension of the problem. Ratio is the number of 

evaluations of the proposed RCGA divided by that of 

AREX/JGG multiplied by 100. If the ratio is smaller than 

100%, the proposed RCGA succeeded in finding the 

optimum with fewer evaluations than AREX/JGG.   
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